江西省吉安市吉水外国语学校2024-2025学年九上数学开学达标检测模拟试题【含答案】_第1页
江西省吉安市吉水外国语学校2024-2025学年九上数学开学达标检测模拟试题【含答案】_第2页
江西省吉安市吉水外国语学校2024-2025学年九上数学开学达标检测模拟试题【含答案】_第3页
江西省吉安市吉水外国语学校2024-2025学年九上数学开学达标检测模拟试题【含答案】_第4页
江西省吉安市吉水外国语学校2024-2025学年九上数学开学达标检测模拟试题【含答案】_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共7页江西省吉安市吉水外国语学校2024-2025学年九上数学开学达标检测模拟试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,菱形ABCD中,AB=2,∠A=120°,点P、Q、K分别为线段BC、CD、BD上的任意一点,则PK+KQ的最小值为()A. B. C.2 D.2、(4分)如图,在平行四边形ABCD中,F,G分别为CD,AD的中点,BF=2,BG=3,,则BC的长度为()A. B. C.2.5 D.3、(4分)下列有理式中,是分式的为()A. B. C. D.4、(4分)某企业1~5月份利润的变化情况如图所示,以下说法与图中反映的信息相符的是().A.1~2月份利润的增长快于2~3月份利润的增长B.1~4月份利润的极差与1~5月份利润的极差不同C.1~5月份利润的众数是130万元D.1~5月份利润的中位数为120万元5、(4分)如果分式有意义,那么的取值范围是()A. B. C. D.6、(4分)在下列四个新能源汽车车标的设计图中,属于中心对称图形的是()A. B. C. D.7、(4分)若分式有意义,则的取值范围是()A.; B.; C.; D..8、(4分)如图,,,垂足分别是,,且,若利用“”证明,则需添加的条件是()A. B.C. D.二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)已知四边形是矩形,点是边的中点,以直线为对称轴将翻折至,联结,那么图中与相等的角的个数为_____________10、(4分)顺次连接矩形ABCD各边中点,所得四边形形状必定是__________.11、(4分)如图,平行四边形ABCD中,AB:BC=3:2,∠DAB=60°,E在AB上,如果AE:EB=1:2,F是BC的中点,过D分别作DP⊥AF于P,DQ⊥CE于Q,那么DP:DC等于_____.12、(4分)己知关于的分式方程有一个增根,则_____________.13、(4分)观察下列按顺序排列的等式:,试猜想第n个等式(n为正整数):an=_____.三、解答题(本大题共5个小题,共48分)14、(12分)如图1,P是菱形ABCD对角线AC上的一点,点E在BC的延长线上,且PE=PB(1)求证:PD=PE;(2)求证:∠DPE=∠ABC;(3)如图2,当四边形ABCD为正方形时,连接DE,试探究线段DE与线段BP的数量关系,并说明理由.15、(8分)一次安全知识测验中,学生得分均为整数,满分10分,这次测验中,甲,乙两组学生人数都为5人,成绩如下(单位:分):甲:8,8,7,8,9乙:5,9,7,10,9(1)填写下表:平均数众数中位数甲______________88乙______________9______________(2)已知甲组学生成绩的方差,计算乙组学生成绩的方差,并说明哪组学生的成绩更稳定.16、(8分)在平面直角坐标系中,规定:抛物线y=a(x−h)+k的关联直线为y=a(x−h)+k.例如:抛物线y=2(x+1)−3的关联直线为y=2(x+1)−3,即y=2x−1.(1)如图,对于抛物线y=−(x−1)+3.①该抛物线的顶点坐标为___,关联直线为___,该抛物线与其关联直线的交点坐标为___和___;②点P是抛物线y=−(x−1)+3上一点,过点P的直线PQ垂直于x轴,交抛物线y=−(x−1)+3的关联直线于点Q.设点P的横坐标为m,线段PQ的长度为d(d>0),求当d随m的增大而减小时,d与m之间的函数关系式,并写出自变量m的取值范围。(2)顶点在第一象限的抛物线y=−a(x−1)+4a与其关联直线交于点A,B(点A在点B的左侧),与x轴负半轴交于点C,直线AB与x轴交于点D,连结AC、BC.①求△BCD的面积(用含a的代数式表示).②当△ABC为钝角三角形时,直接写出a的取值范围。17、(10分)如图,在平行四边形中,对角线、相交于点,是延长线上的点,且为等边三角形.(1)四边形是菱形吗?请说明理由;(2)若,试说明:四边形是正方形.18、(10分)关于x的方程ax2+bx+c=0(a0).(1)已知a,c异号,试说明此方程根的情况.(2)若该方程的根是x1=-1,x2=3,试求方程a(x+2)2+bx+2b+c=0的根.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)已知:正方形,为平面内任意一点,连接,将线段绕点顺时针旋转得到,当点,,在一条直线时,若,,则________.20、(4分)如图,在平面直角坐标系中,矩形OABC的顶点A在y轴正半轴上,边AB、OA(AB>OA)的长分别是方程x2−11x+24=0的两个根,D是AB上的一动点(不与A.B重合).AB=8,OA=3.若动点D满足△BOC与AOD相似,则直线OD的解析式为____.21、(4分)如图,在等边三角形ABC中,AC=9,点O在AC上,且AO=3,点P是AB上的一动点,连接OP,将线段OP绕点O逆时针旋转60°得到线段OD,要使点D恰好落在BC上,则AP的长是________.22、(4分)如图,已知菱形的两条对角线分别为6cm和8cm,则这个菱形的高DE为_____cm.23、(4分)如图,O为数轴原点,A,B两点分别对应-3,3,作腰长为4的等腰△ABC,连接OC,以O为圆心,CO长为半径画弧交数轴于点M,则点M对应的实数为__________.二、解答题(本大题共3个小题,共30分)24、(8分)电商时代使得网购更加便捷和普及.小张响应国家号召,自主创业,开了家淘宝店.他购进一种成本为100元/件的新商品,在试销中发现:销售单价x(元)与每天销售量y(件)之间满足如图所示的关系.(1)求y与x之间的函数关系式;(2)若某天小张销售该产品获得的利润为1200元,求销售单价x的值.25、(10分)已知一次函数的图象过点,且与一次函数的图象相交于点.(1)求点的坐标和函数的解析式;(2)在平面直角坐标系中画出,的函数图象;(3)结合你所画的函数图象,直接写出不等式的解集.26、(12分)如图,为锐角三角形,是边上的高,正方形的一边在上,顶点、分别在、上.已知,.(1)求证:;(2)求这个正方形的面积.

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、A【解析】

先根据四边形ABCD是菱形可知,AD//BC,由∠A=120°可知∠B=60°,作点P关于直线BD的对称点P'',连接P'Q,PC,则P'Q的长即为PK+QK的最小值,由图可知,当点Q与点C重合,CP'⊥AB时PK+QK的值最小,再在Rt△BCP'中利用锐角三角函数的定义求出P'C的长即可。【详解】解:∵四边形ABCD是菱形,∴AD//BC,∵∠A=120°,∴∠B=180°-∠A=180°-120°=60°,作点P关于直线BD的对称点P',连接P'Q,P'C,则P'Q的长即为PK+QK的最小值,由图可知,当点Q与点C重合,CP'⊥AB时PK+QK的值最小,在Rt△BCP'中,∵BC=AB=2,∠B=60°,∴故选:A.本题考查的是轴对称一最短路线问题及菱形的性质,根据题意作出辅助线,构造出直角三角形是解答此题的关键.2、A【解析】

延长AD、BF交于E,过点E作EM⊥BG,根据F是中点得到△CBF≌△DEF,得到BE=2BF=4,根据得到BM=BE=2,ME=2,故MG=1,再根据勾股定理求出EG的长,再得到DE的长即可求解.【详解】延长AD、BF交于E,∵F是中点,∴CF=DF,又AD∥BC,∴∠CBF=∠DEF,又∠CFB=∠DFE,∴△CBF≌△DEF,∴BE=2BF=4,过点E作EM⊥BG,∵,∴∠BEM=30°,∴BM=BE=2,ME=2,∴MG=BG-BM=1,在Rt△EMG中,EG==∵G为AD中点,∴DG=AD=DE,∴DE==,故BC=,故选A.此题主要考查平行四边形的线段求解,解题的关键是熟知全等三角形的判定及勾股定理的运用.3、D【解析】

判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【详解】解:、、的分母中均不含有字母,因此它们是整式,而不是分式.分母中含有字母,因此是分式.故选:D本题主要考查分式的定义,注意π不是字母,是常数,所以不是分式,是整式.4、C【解析】根据折线图1~2月以及2~3月的倾斜程度可以得出:2~3月份利润的增长快于1~2月份利润的增长;故A选项错误,1~4月份利润的极差为:130-100=30,1~5月份利润的极差为:130-100=30;故B选项错误;根据只有130出现次数最多,∴130万元是众数,故C选项正确;1~5月份利润的中位数是:从小到大排列后115万元位于最中间,故D选项错误5、D【解析】

根据分式有意义,分母不等于0列不等式求解即可.【详解】解:由题意得,x+1≠0,

解得x≠-1.

故选:D.本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:

(1)分式无意义⇔分母为零;

(2)分式有意义⇔分母不为零;

(3)分式值为零⇔分子为零且分母不为零.6、D【解析】

根据中心对称图形的概念求解.【详解】解:A.不是中心对称图形,本选项错误;B.不是中心对称图形,本选项错误;C.不是中心对称图形,本选项错误;D.是中心对称图形,本选项正确.故选D.本题主要考查了中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180度后两部分重合.7、B【解析】

分式的分母不为零,即x-2≠1.【详解】∵分式有意义,∴x-2≠1,∴.故选:B.考查了分式有意义的条件,(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.8、B【解析】

本题要判定,已知DE=BF,∠BFA=∠DEC=90°,具备了一直角边对应相等,故添加DC=BA后可根据HL判定.【详解】在△ABF与△CDE中,DE=BF,由DE⊥AC,BF⊥AC,可得∠BFA=∠DEC=90°.∴添加DC=AB后,满足HL.故选B.本题考查了直角三角形全等的判定定理的应用,注意:判定两直角三角形全等的判定定理有SAS,ASA,AAS,SSS,HL.二、填空题(本大题共5个小题,每小题4分,共20分)9、4【解析】

由折叠的性质和等腰三角形的性质可得,∠EDF=∠EFD=∠BEF=∠AEB,由平行线的性质,可得∠AEB=∠CBE,进而得出结论.【详解】由折叠知,∠BEF=∠AEB,AE=FE,∵点E是AD中点,∴AE=DE,∴ED=FE,∴∠FDE=∠EFD,∵∠AEF=∠EDF+∠DFE=∠AEB=∠BEF∴∠AEB=∠EDF,∵AD∥BC,∴∠AEB=∠CBE,∴∠EDF=∠EFD=∠BEF=∠AEB=∠CBE,故答案为:4本题属于折叠问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.解决问题的关键是由等腰三角形的性质得出∠EDF=∠AEB.10、菱形【解析】【分析】连接BD,AC,根据矩形性质和三角形中位线性质,可证四条边相等,可得菱形.【详解】如图连接BD,AC由矩形性质可得AC=BD,因为,E,F,G,H是各边的中点,所以,根据三角形中位线性质可得:HG=EF=BD,EH=FG=AC所以,EG=EF=EF=FG,所以,所得四边形EFGH是菱形.故答案为:菱形【点睛】本题考核知识点:矩形性质,菱形判定.解题关键点:由三角形中位线性质证边相等.11、【解析】

连接DE、DF,过F作FN⊥AB于N,过C作CM⊥AB于M,根据平行四边形的性质得到AD∥BC,根据平行线的性质得到∠CBN=∠DAB=60°,根据勾股定理得到AF=,根据三角形和平行四边形的面积公式即可得到结论.【详解】连接DE、DF,过F作FN⊥AB于N,过C作CM⊥AB于M,∵四边形ABCD是平行四边形,∴AD∥BC,∵∠DAB=60°,∴∠CBN=∠DAB=60°,∴∠BFN=∠MCB=30°,∵AB:BC=3:2,∴设AB=3a,BC=2a,∴CD=3a,∵AE:EB=1:2,F是BC的中点,∴BF=a,BE=2a,∵∠FNB=∠CMB=90°,∠BFN=∠BCM=30°,∴BM=BC=a,BN=BF=a,FN=a,CM=a,∴AF=,∵F是BC的中点,∴S△DFA=S平行四边形ABCD,即AF×DP=CD×CM,∴PD=,∴DP:DC=.故答案为:.本题考查了平行四边形的性质,平行四边形面积,勾股定理,三角形的面积,含30度角的直角三角形等知识点的应用,正确的作出辅助线是解题的关键.12、【解析】

增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,那么最简公分母x-3=0,所以增根是x=3,把增根代入化为整式方程的方程即可求出未知字母的值.【详解】方程两边都乘(x−3),得x−2(x−3)=k+1,∵原方程有增根,∴最简公分母x−3=0,即增根是x=3,把x=3代入整式方程,得k=2.本题主要考查了分式方程的增根,熟悉掌握步骤是关键.13、.【解析】

根据题意可知,∴.三、解答题(本大题共5个小题,共48分)14、(1)详见解析;(2)详见解析;(3)DE=BP,理由详见解析【解析】

(1)根据菱形的性质得出BC=DC,∠BCP=∠DCP,然后利用“边角边”证明△BCP≌△DCP得出PB=PD,由已知PE=PB,即可得出结论;(2)根据全等三角形对应角相等可得∠CBP=∠CDP,根据等边对等角可得∠CBP=∠E,然后求出∠DPE=∠DCE,再根据两直线平行,同位角相等可得∠DCE=∠ABC,从而得证;(3)证出△PDE是等腰直角三角形,由等腰直角三角形的性质得出DE=PE,即可得出结论.【详解】(1)证明:∵四边形ABCD是菱形,∴BC=DC,∠BCP=∠DCP,AB∥DC,∵在△BCP和△DCP中,,∴△BCP≌△DCP(SAS),∴PB=PD,∵PE=PB,∴PD=PE;(2)证明:如图1所示:由(1)知,△BCP≌△DCP,∴∠CBP=∠CDP,∵PE=PB,∴∠CBP=∠E,∵∠CFE=∠DFP(对顶角相等),∴180°-∠DFP-∠CDP=180°-∠CFE-∠E,即∠DPE=∠DCE,∵AB∥CD,∴∠DCE=∠ABC,∴∠DPE=∠ABC;(3)解:DE=BP,理由如下:∵四边形ABCD是正方形,∴∠ABC=90°,由(1)知:PD=BP=PE,由(2)知,∠DPE=∠ABC=90°,∴△PDE是等腰直角三角形,∴DE=PE,∴DE=BP.本题是四边形综合题目,考查了菱形的性质、正方形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、等腰三角形的性质等知识;本题综合性强,熟记菱形和正方形的性质,证明三角形全等是解题的关键.15、(1)甲:平均数8;乙:平均数8,中位数9;(2)甲组学生的成绩比较稳定.【解析】

(1)根据平均数和中位数的定义求解可得;(2)根据方差的定义计算出乙的方差,再比较即可得.【详解】(1)甲的平均数:,乙的平均数:,乙的中位数:9;(2).∵,∴甲组学生的成绩比较稳定.本题考查了求平均数,中位数与方差,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.16、(1)①(1,3),y=−x+4,(1,3)和(2,2);②当m<1,d=m−3m+2;⩽m<2时,d=−m+3m−2;;(2)①9a;②0<a<或a>1.【解析】

(1)①利用二次函数的性质和新定义得到抛物线的顶点坐标和关联直线解析式;然后解方程组得该抛物线与其关联直线的交点坐标;②设P(m,-m+2m+2),则Q(m,-m+4),如图1,利用d随m的增大而减小得到m<1或1<m<2,当m<1时,用m表示s得到d=m-3m+2;当1<m<2时,利用m表示d得到d=-m+3m-2,根据二次函数的性质得当m≥,d随m的增大而减小,所以≤m<2时,d=-m+3m-2;(2)①先确定抛物线y=-a(x-1)+4a的关联直线为y=-ax+5a,再解方程组得A(1,4a),B(2,3a),接着解方程-a(x-1)+4a=0得C(-1,0),解方程-ax+5a=0得D(5,0),然后利用三角形面积公式求解;②利用两点间的距离公式得到AC=2+16a,BC=3+9a,AB=1+a,讨论:当AC+AB<BC,∠BAC为钝角,即2+16a+1+a<3+9a;当BC+AB<AC,∠BAC为钝角,即3+9a+1+a<2+16a,然后分别解不等式即可得到a的范围.【详解】(1)①抛物线的顶点坐标为(1,3),关联直线为y=−(x−1)+3=−x+4,解方程组得或,所以该抛物线与其关联直线的交点坐标为(1,3)和(2,2);故答案为(1,3),y=−x+4,(1,3)和(2,2);②设P(m,−m+2m+2),则Q(m,−m+4),如图1,∵d随m的增大而减小,∴m<1或1<m<2,当m<1时,d=−m+4−(−m+2m+2)=m−3m+2;当1<m<2时,d=−m+2m+2−(m+4)=−m+3m−2,当m⩾,d随m的增大而减小,综上所述,当m<1,d=m−3m+2;⩽m<2时,d=−m+3m−2;(2)①抛物线y=−a(x−1)+4a的关联直线为y=−a(x−1)+4a=−ax+5a,解方程组得或,∴A(1,4a),B(2,3a),当y=0时,−a(x−1)+4a=0,解得x=3,x=−1,则C(−1,0),当y=0时,−ax+5a=0,解得x=5,则D(5,0),∴S△BCD=×6×3a=9a;②AC=2+16a,BC=3+9a,AB=1+a,当AC+AB<BC,∠BAC为钝角,即2+16a+1+a<3+9a,解得a<;当BC+AB<AC,∠BAC为钝角,即3+9a+1+a<2+16a,解得a>1,综上所述,a的取值范围为0<a<或a>1此题考查二次函数综合题,解题关键在于利用勾股定理进行计算17、(1)四边形为菱形,理由见解析;(2)见解析【解析】

(1)根据“对角线互相垂直的平行四边形是菱形”即可求证.(2)根据“有一个角是90°的菱形是正方形”即可求证.【详解】(1)四边形为菱形,理由:在平行四边形中,,是等边三角形.,又、、、四点在一条直线上,.平行四边形是菱形.(对角线互相垂直的平行四边形是菱形)(2)由是等边三角形,,得到,,..,四边形是菱形,,,四边形是正方形.(有一个角是90°的菱形是正方形)本题考查了平行四边形的性质以及菱形、正方形的判定定理,熟练掌握相关性质定理是解答本题的关键.18、(1)见解析;(2)x=-3或x=1【解析】

(1)用一元二次的根判别式判断即可;(2)观察得出a(x+2)2+bx+2b+c=0的解是原方程的解加2,从而解出方程【详解】(1)∵△=b2﹣4ac,当a、c异号时,即ac<0,∴△=b2﹣4ac>0,∴该方程必有两个不相等的实数根;(2)∵ax2+bx+c=0两根分别为x1=-1,x2=3,∴方程a(x+2)2+bx+2b+c=a(x+2)2+b(x+2)+c=0中的x+2=-1或x+2=3解得x=-3或x=1熟练掌握一元二次方程根的判别式是解决本题的关键,(2)通过两根不能算出啊,b,c的值则要观察题上两方程之间的关系一、填空题(本大题共5个小题,每小题4分,共20分)19、或【解析】

分两种情况讨论:(1)当点G在线段BD上时,如下图连接EG交CD于F;(2)当点G在线段BD的延长线上时,如下图连接EG交CD的延长线于F.根据两种情况分别画出图形,证得是等腰直角三角形,求出DF=EF=2,然后在直角三角形ECF中利用勾股定理即可求出CE的长.【详解】解:分两种情况讨论:(1)当点G在线段BD上时,如下图连接EG交CD于F∵ABCD是正方形∴CD=AD=4∵线段绕点顺时针旋转得到∴是等腰直角三角形,DE=DG=∴DF=EF=2∴CF=CD-DF=4-2=2∴CE=(2)当点G在线段BD的延长线上时,如下图连接EG交CD的延长线于F∵ABCD是正方形∴CD=AD=4∵线段绕点顺时针旋转得到∴是等腰直角三角形,DE=DG=∴DF=EF=2∴CF=CD+DF=4+2=6∴CE=综上所述,CE的长为或本题考查了正方形的性质、旋转的性质及等腰直角三角形的性质,通过旋转证得是等腰直角三角形进行有关的计算是解题的关键.20、y=−83【解析】

分两种情况:△BOC∽△DOA和△BOC∽△ODA,由相似三角形的对应边成比例求得点D的坐标,由待定系数法求得直线OD的解析式;【详解】若△BOC∽△DOA.则BCOC即38所以AD=98若△BOC∽△ODA,可得AD=8(与题意不符,舍去)设直线OD解析式为y=kx,则3=−98k即k=−83直线OD的解析式为y=−83x此题考查一次函数的性质,解题关键在于利用相似三角形的性质求解.21、6【解析】

由题意得,∵∠A+∠APO=∠POD+∠COD,∠A=∠POD=60°,∴∠APO=∠COD,在△AOP与△CDO中,,∴△AOP≌△CDO(AAS),∴AP=CO=AC﹣AO=9﹣3=6.故答案为6.22、4.1【解析】

直接利用勾股定理得出菱形的边长,再利用菱形的面积求法得出答案.【详解】解:∵菱形的两条对角线分别为6cm和1cm,∴菱形的边长为:=5(cm),设菱形的高为:xcm,则5x=×6×1,解得:x=4.1.故答案为:4.1.此题主要考查了菱形的性质,正确得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论