江苏省盐城市联谊学校2025届数学九上开学统考试题【含答案】_第1页
江苏省盐城市联谊学校2025届数学九上开学统考试题【含答案】_第2页
江苏省盐城市联谊学校2025届数学九上开学统考试题【含答案】_第3页
江苏省盐城市联谊学校2025届数学九上开学统考试题【含答案】_第4页
江苏省盐城市联谊学校2025届数学九上开学统考试题【含答案】_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页江苏省盐城市联谊学校2025届数学九上开学统考试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)在平行四边形ABCD中,数据如图,则∠D的度数为()A.20° B.80° C.100° D.120°2、(4分)当x=2时,函数y=-x2+1的值是()A.-2 B.-1 C.2 D.33、(4分)如图,正方形ABCD中,AE=AB,直线DE交BC于点F,则∠BEF=()A.30° B.45° C.55° D.60°4、(4分)已知直角三角形中30°角所对的直角边长是cm,则另一条直角边的长是()A.4cm B.cm C.6cm D.cm5、(4分)在一次统考中,从甲、乙两所中学初二学生中各抽取50名学生进行成绩分析,甲校的平均分和方差分别是82分和245分,乙校的平均分和方差分别是82分和190分,根据抽样可以粗略估计成绩较为整齐的学校是()A.甲校 B.乙校 C.两校一样整齐 D.不好确定哪校更整齐6、(4分)下列有理式中,是分式的为()A. B. C. D.7、(4分)函数的图象如图所示,则结论:①两函数图象的交点的坐标为(2,2);②当x>2时,;③当x=1时,BC=3;④当x逐渐增大时,随着的增大而增大,随着的增大而减小.则其中正确结论的序号是()A.①② B.①③ C.②④ D.①③④8、(4分)在平面直角坐标系中,反比例函数的图象上有三点,若且,则的取值范围为()A. B.C. D.二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,在中,平分,,垂足为点,交于点,为的中点,连结,,,则的长为_____.10、(4分)在平行四边形ABCD中,若∠A+∠C=160°,则∠B=_____.11、(4分)当x=﹣1时,代数式x2+2x+2的值是_____.12、(4分)如图,四边形ABCD沿直线AC对折后重合,如果AC,BD交于O,AB∥CD,则结论①AB=CD,②AD∥BC,③AC⊥BD,④AO=CO,⑤AB⊥BC,其中正确的结论是___(填序号).13、(4分)某市某活动中心组织了一次少年跳绳比赛,各年龄组的参赛人数如表所示:年龄组12岁13岁14岁15岁参赛人数5191313则全体参赛选手年龄的中位数是________.三、解答题(本大题共5个小题,共48分)14、(12分)如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于点F,连接DF.(1)求证:∠BAC=∠DAC,∠AFD=∠CFE;(2)若AB∥CD,试证明四边形ABCD是菱形;(3)在(2)的条件下,试确定E点的位置,使∠EFD=∠BCD,并说明理由.15、(8分)已知:如图,平面直角坐标系xOy中,B(0,1),OB=OC=OA,A、C分别在x轴的正负半轴上.过点C的直线绕点C旋转,交y轴于点D,交线段AB于点E.(1)求∠OAB的度数及直线AB的解析式;(2)若△OCD与△BDE的面积相等,求点D的坐标.16、(8分)如图,⊙O为ABC的外接圆,D为OC与AB的交点,E为线段OC延长线上一点,且EACABC.(1)求证:直线AE是⊙O的切线;(2)若D为AB的中点,CD3,AB8.①求⊙O的半径;②求ABC的内心I到点O的距离.17、(10分)解方程:(1)(2x+1)2=(x-1)2;(2)x2+4x-7=018、(10分)如图所示,四边形ABCD,∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m.(1)求证:BD⊥CB;(2)求四边形ABCD的面积;(3)如图2,以A为坐标原点,以AB、AD所在直线为x轴、y轴建立直角坐标系,点P在y轴上,若S△PBD=S四边形ABCD,求P的坐标.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)已知一组数据3、a、4、6的平均数为4,则这组数据的中位数是______.20、(4分)如图菱形ABCD的对角线AC,BD的长分别为12cm,16cm,则这个菱形的周长为____.21、(4分)化简:(2)2=_____.22、(4分)若干桶方便面摆放在桌子上.实物图片左边所给的是它的三视图.则这一堆方便面共有桶.23、(4分)如图,⊙O是△ABC的外接圆,已知∠ABO=30º,则∠ACB的为_____º.二、解答题(本大题共3个小题,共30分)24、(8分)一手机经销商计划购进某品牌的A型、B型、C型三款手机共60部,每款手机至少要购进8部,且恰好用完购机款61000元.设购进A型手机x部,B型手机y部.三款手机的进价和预售价如下表:手机型号

A型

B型

C型

进价(单位:元/部)

900

1200

1100

预售价(单位:元/部)

1200

1600

1300

(1)用含x,y的式子表示购进C型手机的部数;(2)求出y与x之间的函数关系式;(3)假设所购进手机全部售出,综合考虑各种因素,该手机经销商在购销这批手机过程中需另外支出各种费用共1500元.①求出预估利润P(元)与x(部)的函数关系式;(注:预估利润P=预售总额-购机款-各种费用)②求出预估利润的最大值,并写出此时购进三款手机各多少部.25、(10分)如图,在平面直角坐标系中,A(0,8),B(﹣4,0),线段AB的垂直平分线CD分别交AB、OA于点C、D,其中点D的坐标为(0,3).(1)求直线AB的解析式;(2)求线段CD的长;(3)点E为y轴上一个动点,当△CDE为等腰三角形时,求E点的坐标.26、(12分)甲、乙两人匀速从同一地点到1500米处的图书馆看书,甲出发5分钟后,乙以50米/分的速度沿同一路线行走.设甲、乙两人相距s(米),甲行走的时间为t(分),s关于t的函数图象的一部分如图所示.(1)求甲行走的速度;(2)在坐标系中,补画s关于t的函数图象的其余部分;(3)问甲、乙两人何时相距360米?

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B【解析】

依据平行四边形的性质可得5x+4x=180°,解得x=20°,则∠D=∠B=80°.【详解】∵四边形ABCD是平行四边形,∴AD∥BC.∴5x+4x=180°,解得x=20°.∴∠D=∠B=4×20°=80°.故选B.本题主要考查了平行四边形的性质:邻角互补.同时考查了方程思想.2、B【解析】

把x=2代入函数关系式进行计算即可得解.【详解】x=2时,y=−×22+1=−1.故选:B.本题考查了函数值求解,把自变量的值代入进行计算即可,比较简单.3、B【解析】

先设,根据题意得出,然后根据等腰三角形性质,,最后根据即可求解.【详解】解:设,∵四边形ABCD是正方形,∴,∵,∴,∴,,,∴.故选B.本题主要考查正方形的性质、等腰三角形的性质,利用方程思想求解是关键.4、C【解析】如图,∵∠C=90°,∠B=30°,AC=2cm,∴AB=2AC=4cm,由勾股定理得:BC==6cm,故选C.5、B【解析】

根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】∵甲校和乙校的平均数是相等的,甲校的方差大于乙校的方差,∴成绩较为整齐的学校是乙校.故选B.本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.6、D【解析】

判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【详解】解:、、的分母中均不含有字母,因此它们是整式,而不是分式.分母中含有字母,因此是分式.故选:D本题主要考查分式的定义,注意π不是字母,是常数,所以不是分式,是整式.7、D【解析】

一次函数和反比例函数的交点坐标就是一次函数与反比例函数组成的方程组的解;根据图象可求得x>2时y1>y2;根据x=1时求出点B点C的坐标从而求出BC的值;根据图像可确定一次函数和反比例函数在第一象限的增减性.【详解】解:①联立一次函数与反比例函数的解析式,解得,,∴A(2,2),故①正确;②由图象得x>2时,y1>y2,故②错误;③当x=1时,B(1,4),C(1,1),∴BC=3,故③正确;④一次函数y随x的增大而增大,反比例函数k>0,y随x的增大而减小.故④正确.∴①③④正确.故选D.本题主要是考查学生对两个函数图象性质的理解.这是一道常见的一次函数与反比例函数结合的题目,需要学生充分掌握一次函数和反比例函数的图象特征.理解一次函数和反比例函数的交点坐标就是一次函数与反比例函数组成的方程组的解.8、D【解析】

首先根据题意求出的值,进一步确定出点Q的坐标,然后利用双曲线关于轴对称进一步如图分两种情况分析求解即可.【详解】如图,点P(2,2)在反比例函数的图象上,∴,∵点Q(,)在反比例函数图象上,∴,∴Q(,),∵双曲线关于轴对称,∴与(,)对称的的坐标为(,),∵点M(,)在反比例函数图象上,且,PM>PQ,∴点M在第三象限左边的曲线上,或在右侧的曲线上,∴点M的纵坐标的取值范围为:或,故选:D.本题主要考查了反比例函数图象的性质,熟练掌握相关概念及方法是解题关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、6.5【解析】

由条件“BF平分∠ABC,AG⊥BF”可判定三角形ABG是等腰三角形(AB=GB),再由条件“E为AC的中点”,可判定DE是三角形AGB的中位线,由此可得GC=2DE,进而可求出BC的长.【详解】∵BF平分∠ABC,AG⊥BF,∴△ABG是等腰三角形,∴AB=GB=4cm,∵BF平分∠ABC,∴AD=DG,∵E为AC的中点,∴DE是△AGB的中位线,∴DE=CG,∴CG=2DE=5cm,∴BC=BG+CG=4+2.5=6.5cm,故答案为6.5本题考查三角形的性质,解题关键在于判定三角形ABG是等腰三角形10、100°【解析】

由平行四边形的性质得出对角相等,邻角互补,∠A=∠C,∠A+∠B=180°,由∠A+∠C=160°,得出∠A=∠C=80°,即可求出∠B.【详解】解:∵四边形ABCD是平行四边形,∴∠A=∠C,∠A+∠B=180°,∵∠A+∠C=160°,∴∠A=∠C=80°,∴∠B=180°﹣∠A=100°;故答案为:100°.本题考查了平行四边形的性质;熟练掌握平行四边形的对角相等,邻角互补的性质是解决问题的关键.11、24【解析】

将原式化为x2+2x+1+1的形式并运用完全平方公式进行求解.【详解】解:原式=(x+1)2+1=(﹣1+1)2+1=23+1=24,故答案为24.观察并合理使用因式分解的相关公式可以大大简化计算过程.12、①②③④【解析】

由翻折的性质可知;AD=AB,DC=BC,∠DAC=∠BCA,由平行线的性质可知∠BAC=∠DCA,从而得到∠ACB=∠BAC,故此AB=BC,从而可知四边形ABCD为菱形,最后依据菱形的性质判断即可.【详解】由翻折的性质可知;AD=AB,DC=BC,∠DAC=∠BCA.∵AB∥DC,∴∠BAC=∠DCA.∴∠BCA=∠BAC.∴AB=BC.∴AB=BC=CD=AD.∴四边形ABCD为菱形.∴AD∥BC,AB=CD,AC⊥BD,AO=CO.故答案为①②③④本题主要考查的是翻折的性质、菱形的性质和判定、等腰三角形的判定、平行线的性质,证得四边形ABCD为菱形是解题的关键.13、1【解析】

根据中位数的定义来求解即可,中位数是指将数据按大小顺序排列起来,形成一个数列,居于数列中间位置的那个数据.【详解】解:本次比赛一共有:5+19+13+13=50人,∴中位数是第25和第26人的年龄的平均数,∵第25人和第26人的年龄均为1岁,∴全体参赛选手的年龄的中位数为1岁.故答案为1.中位数的定义是本题的考点,熟练掌握其概念是解题的关键.三、解答题(本大题共5个小题,共48分)14、(1)证明见解析(2)证明见解析(3)当BE⊥CD时,∠EFD=∠BCD【解析】

(1)先判断出△ABC≌△ADC得到∠BAC=∠DAC,再判断出△ABF≌△ADF得出∠AFB=∠AFD,最后进行简单的推算即可;(2)先由平行得到角相等,用等量代换得出∠DAC=∠ACD,最后判断出四边相等;(3)由(2)得到判断出△BCF≌△DCF,结合BE⊥CD即可.【详解】(1)证明:在△ABC和△ADC中,AB=ADCB=CD∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC,在△ABF和△ADF中,AB=AD∠BAF=∠DAF∴△ABF≌△ADF(SAS),∴∠AFB=∠AFD,∵∠CFE=∠AFB,∴∠AFD=∠CFE,∴∠BAC=∠DAC,∠AFD=∠CFE;(2)证明:∵AB∥CD,∴∠BAC=∠ACD,∵∠BAC=∠DAC,∴∠BAC=∠ACD,∴∠DAC=∠ACD,∴AD=CD,∵AB=AD,CB=CD,∴AB=CB=CD=AD,∴四边形ABCD是菱形;(3)BE⊥CD时,∠BCD=∠EFD;理由如下:∵四边形ABCD是菱形,∴BC=CD,∠BCF=∠DCF,∵CF=CF,∴△BCF≌△DCF,∴∠CBF=∠CDF,∵BE⊥CD,∴∠BEC=∠DEF=90°,∴∠BCD=∠EFD.15、(1)45°,y=﹣x+1;(2)(0,).【解析】

(1)根据A、B的坐标和三角形的内角和定理求出∠OAB的度数即可;设直线AB的解析式为y=kx+b,把A、B的坐标代入得出方程组,求出方程组的解即可;(2)推出三角形AOB和三角形ACE的面积相等,根据面积公式求出E的纵坐标,代入直线AB的解析式,求出E的横坐标,设直线CE的解析式是:y=mx+n,利用待定系数法求出直线EC的解析式,进而即可求得点D的坐标.【详解】解:(1)∵OB=OC=OA,∠AOB=90°,∴∠OAB=45°;∵B(0,1),∴A(1,0),设直线AB的解析式为y=kx+b.∴解得,∴直线AB的解析式为y=﹣x+1;(2)∵S△COD=S△BDE,∴S△COD+S四边形AODE=S△BDE+S四边形AODE,即S△ACE=S△AOB,∵点E在线段AB上,∴点E在第一象限,且yE>0,∴∴把y代入直线AB的解析式得:∴设直线CE的解析式是:y=mx+n,∵代入得:解得:∴直线CE的解析式为令x=0,则∴D的坐标为本题考查了等腰三角形的性质,用待定系数法求一次函数的解析式,三角形的面积等知识点,综合运用这些性质进行推理和计算是解此题的关键,此题题型较好,综合性比较强,但难度适中,通过做此题培养了学生分析问题和解决问题的能力.16、(1)见解析;(2)①⊙O的半径r=256;②ABC的内心I到点O的距离为【解析】

(1)连接AO,证得EACABC=12∠AOC,∠CAO=90∘-12∠AOC(2)①设⊙O的半径为r,则OD=r-3,在△AOD中,根据勾股定理即可得出②作出ABC的内心I,过I作AC,BC的垂线,垂足分别为F,G.设内心I到各边的距离为a,由面积法列出方程求解可得答案.【详解】(1)如图,连接AO则EACABC=12又∵AO=BO,∴ACO=CAO=180∴EAO=EAC+CAO=12AOC+90∘∴EA⊥AO∴直线AE是⊙O的切线;(2)①设⊙O的半径为r,则OD=r-3,∵D为AB的中点,∴OC⊥AB,ADO=90∘,∴AD2+O解得r=②如下图,∵D为AB的中点,∴AC=BC=且CO是∠ACB的平分线,则内心I在CO上,连接AI,BI,过I作AC,BC的垂线,垂足分别为F,G.易知DI=FI=GI,设其长为a.由面积可知:S即1解得a=∴OI=DI+DO=∴ABC的内心I到点O的距离为5本题考查了圆的切线的判定,垂径定理,圆周角定理等知识,是中考常见题.17、(1)x1=0,x2=-2;(2)x1=-2+,x2=-2-.【解析】分析:(1)用直接开平方法求解即可;(2)根据求根公式:计算即可.详解:(1)∵(2x+1)2=(x-1)2,∴2x+1=x-1或2x+1=-(x-1),∴2x-x=-1-1或2x+1=-x+1,∴2x-x=--1或2x+1=-x+1,∴x=-2或x=0,即x1=0,x2=-2;(2)x2+4x-7=0∵a=1,b=4,c=-7,∴x=,∴x1=-2+,x2=-2-.点睛:本题主要考查的知识点是一元二次方程的解法-直接开平方法和求根公式法.熟练掌握直接开平方法和求根公式法是解答本题的关键,本题属于一道基础题,难度适中.18、(1)证明见解析;(1)36m1;(3)P的坐标为(0,-1)或(0,10).【解析】

(1)先根据勾股定理求出BD的长度,然后根据勾股定理的逆定理,即可证明BD⊥BC;(1)根据四边形ABCD的面积=△ABD的面积+△BCD的面积,代入数据计算即可求解;(3)先根据S△PBD=S四边形ABCD,求出PD,再根据D点的坐标即可求解.【详解】(1)证明:连接BD.∵AD=4m,AB=3m,∠BAD=90°,∴BD=5m.又∵BC=11m,CD=13m,∴BD1+BC1=CD1.∴BD⊥CB;(1)四边形ABCD的面积=△ABD的面积+△BCD的面积=×3×4+×11×5=6+30=36(m1).故这块土地的面积是36m1;(3)∵S△PBD=S四边形ABCD∴•PD•AB=×36,

∴•PD×3=9,∴PD=6,∵D(0,4),点P在y轴上,∴P的坐标为(0,-1)或(0,10).本题主要考查了勾股定理、勾股定理的逆定理、三角形的面积等知识点,解此题的关键是能求出∠DBC=90°.一、填空题(本大题共5个小题,每小题4分,共20分)19、3.5【解析】

先根据平均数的计算公式求出x的值,再根据中位数的定义即可得出答案.【详解】∵数据3、a、4、6的平均数是4,∴(3+a+4+6)÷4=4,∴x=3,把这组数据从小到大排列为:3、3、4、6最中间的数是3.5,则中位数是3.5;故答案为:3.5.此题考查中位数,算术平均数,解题关键在于利用平均数求出a的值.20、40cm【解析】

根据菱形的对角线互相垂直平分可得AC⊥BD,OA=AC,OB=BD,再利用勾股定理列式求出AB,然后根据菱形的四条边都相等列式计算即可得解.【详解】解:∵四边形ABCD是菱形,∴AC⊥BD,OA=AC=×12=6cm,OB=BD=×16=8cm,根据勾股定理得,,所以,这个菱形的周长=4×10=40cm.故答案为:40cm.本题考查了菱形的性质,勾股定理,主要利用了菱形的对角线互相垂直平分,需熟记.21、1.【解析】

根据二次根式的性质:进行化简即可得出答案.【详解】故答案为:1.本题考查了二次根式的性质及运算.熟练应用二次根式的性质及运算法则进行化简是解题的关键.22、1【解析】从俯视图中可以看出最底层方便面的个数及摆放的形状,从主视图可以看出每一层方便面的层数和个数,从左视图可看出每一行方便面的层数和个数,从而算出总的个数.所以三摞方便面是桶数之和为:3+1+2=1.23、60°【解析】

首先根据等腰三角形的性质及三角形内角和定理求出∠AOB的度数,再利用圆周角与圆心角的关系求出∠ACB的度数.【详解】解:△AOB中,OA=OB,∠ABO=30°;

∴∠AOB=180°-2∠ABO=120°;

∴∠ACB=∠AOB=60°.故选A.本题考查圆周角定理的应用,涉及到的知识点还有:等腰三角形的性质以及三角形内角和定理.二、解答题(本大题共3个小题,共30分)24、(1)60-x-y(2)y=2x-1(3)①P=10x+10②最大值为1710元.此时购进A型手机3部,B型手机18部,C型手机8部【解析】

(1)手机经销商计划购进某品牌的A型、B型、C型三款手机共60部,设购进A型手机x部,B型手机y部,那么购进C型手机的部数=60-x-y;(2)由题意,得900x+1200y+1100(60-x-y)=61000,整理得y=2x-1.(3)①由题意,得P=1200x+1600y+1300(60-x-y)-61000-110,整理得P=10x+10.②购进C型手机部数为:60-x-y=110-3x.根据题意列不等式组,得解得29≤x≤3.∴x范围为29≤x≤3,且x为整数.∵P是x的一次函数,k=10>0,∴P随x的增大而增大.∴当x取最大值3时,P有最大值,最大值为1710元.此时购进A型手机3部,B型手机18部,C型手机8部.点评:本题考查函数及其最值、不等式;解答本题的关键是掌握函数的概念和性质,会写函数的关系式,会求函数的最值,要求考生会求解不等式组的25、(1)直线AB的解析式为y=2x+8;(2)CD=;(3)满足题意的点E坐标为(0,5+)或(0,5﹣)或(0,5)或(0,).【解析】

(1)用待定系数法求解即可;(2)先由勾股定理求出AB的长,再由垂直平分线的性质求出AC的长,然后证明△CAD∽△OAB,利用相似三角形的对应边成比例即可求出CD的长,(3)先由△CAD∽△OAB,求出AD和OD的长,然后分当CD=DE时,当CD=CE时,当CE=DE时三种情况求解即可;【详解】(1)∵A(0,8),∴设直线AB的解析式为y=kx+8,∵B(﹣4,0),∴﹣4k+8=0,∴k=2,∴直线AB的解析式为y=2x+8;(2)∵A(0,8),B(﹣4,0),∴OA=8,OB=4,AB=4,∵CD是AB的垂直平分线,∴∠ACD=90°,AC=AB=2,∵∠ACD=∠AOB=90°,∠CAD=∠OAB,∴△CAD∽△OAB,∴,∴,∴CD=,(3)∵△CAD∽△OAB,∴,∴,∴AD=5,∴OD=OA﹣AD=3,D(0,3),当CD=DE时,DE=,∴E(0,5+)或(0,5﹣),当CD=CE时,如图1,∵A(0,8),B(﹣4,0),∴C(﹣2,4),过点C作CF⊥y轴于F,∴DF=EF,F(0,4),

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论