版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共5页江苏省徐州市区部分2024年九年级数学第一学期开学统考试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,两个边长相等的正方形ABCD和EFGH,正方形EFGH的顶点E固定在正方形ABCD的对称中心位置,正方形EFGH绕点E顺时针方向旋转,设它们重叠部分的面积为S,旋转的角度为θ,S与θ的函数关系的大致图象是()A. B. C. D.2、(4分)我国古代用勾、股和弦分别表示直角三角形的两条直角边和斜边,如图由四个全等的直角三角形和一个小正方形拼成一个大正方形,数学家邹元治利用该图证明了勾股定理,现已知大正方形面积为9,小正方形面积为5,则每个直角三角形中勾与股的差的平方为()A.4 B.3 C.2 D.13、(4分)下列方程中,判断中错误的是()A.方程是分式方程 B.方程是二元二次方程C.方程是无理方程 D.方程是一元二次方程4、(4分)若代数式xxA.x≠1B.x≥0C.x>0D.5、(4分)如图,在Rt△ABC中,∠C=90°,∠ABC=30°,AB=8,将△ABC沿CB方向向右平移得到△DEF.若四边形ABED的面积为8,则平移距离为()A.2 B.4 C.8 D.166、(4分)对一组数据:2,1,3,2,3分析错误的是()A.平均数是2.2 B.方差是4 C.众数是3和2 D.中位数是27、(4分)如图,在矩形中,点的坐标为,则的长是()A. B. C. D.8、(4分)下列说法正确的是()A.为了解昆明市中学生的睡眠情况,应该采用普查的方式B.数据2,1,0,3,4的平均数是3C.一组数据1,5,3,2,3,4,8的众数是3D.在连续5次数学周考测试中,两名同学的平均分相同,方差较大的同学数学成绩更稳定二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,等腰△ABC中,AB=AC,AB的垂直平分线MN交边AC于点D,且∠DBC=15°,则∠A的度数是_______.10、(4分)设甲组数:,,,的方差为,乙组数是:,,,的方差为,则与的大小关系是_______(选择“>”、“<”或“=”填空).11、(4分)与最简二次根式5是同类二次根式,则a=_____.12、(4分)将函数y=3x+1的图象沿y轴向下平移2个单位长度,所得直线的函数表达式为_____.13、(4分)如图是一张长方形纸片ABCD,已知AB=8,AD=7,E为AB上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP),使点P落在长方形ABCD的某一条边上,则等腰三角形AEP的底边长是_____________.三、解答题(本大题共5个小题,共48分)14、(12分)已知:如图1,在平面直角坐标系中,直线与坐标轴分别相交于点,与直线相交于点.(1)求点的坐标;(2)若平行于轴的直线交于直线于点,交直线于点,交轴于点,且,求的值;(3)如图2,点是第四象限内一点,且,连接,探究与之间的位置关系,并证明你的结论.15、(8分)某书店积极响应政府“改革创新,奋发有为”的号召,举办“读书节“系列活动.活动中故事类图书的标价是典籍类图书标价的1.5倍,若顾客用540元购买图书,能单独购买故事类图书的数量恰好比单独购买典籍类图书的数量少10本.(1)求活动中典籍类图书的标价;(2)该店经理为鼓励广大读者购书,免费为购买故事类的读者赠送图1所示的精致矩形包书纸.在图1的包书纸示意图中,虚线是折痕,阴影是裁剪掉的部分,四角均为大小相同的正方形,正方形的边长为折叠进去的宽度.已知该包书纸的面积为875cm2(含阴影部分),且正好可以包好图2中的《中国故事》这本书,该书的长为21cm,宽为15cm,厚为1cm,请直接写出该包书纸包这本书时折叠进去的宽度.16、(8分)如图是一张长20cm、宽12cm的矩形纸板,将纸板四个角各剪去一个边长为cm的正方形,然后将四周突出部分折起,可制成一个无盖纸盒.(1)这个无盖纸盒的长为cm,宽为cm;(用含x的式子表示)(2)若要制成一个底面积是180m2的无盖长方体纸盒,求的值.17、(10分)已知:正方形ABCD,E为平面内任意一点,连接DE,将线段DE绕点D顺时针旋转90°得到DG,连接EC,AG.(1)当点E在正方形ABCD内部时,①根据题意,在图1中补全图形;②判断AG与CE的数量关系与位置关系并写出证明思路.(2)当点B,D,G在一条直线时,若AD=4,DG=,求CE的长.(可在备用图中画图)18、(10分)已知,在四边形ABCD中,点E、点F分别为AD、BC的中点,连接EF.(1)如图1,AB∥CD,连接AF并延长交DC的延长线于点G,则AB、CD、EF之间的数量关系为;(2)如图2,∠B=90°,∠C=150°,求AB、CD、EF之间的数量关系?(3)如图3,∠ABC=∠BCD=45°,连接AC、BD交于点O,连接OE,若AB=,CD=2,BC=6,则OE=.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,在平面直角坐标系xOy中,直线l1,l2分别是函数y=k1x+b1和y=k2x+b2的图象,则可以估计关于x的不等式k1x+b1>k2x+b2的解集为_____.20、(4分)2x-3>-5的解集是_________.21、(4分)八年级(1)班四个绿化小组植树的棵数如下:8,8,10,x.已知这组数据的众数和平均数相等,那么这组数据的方差是_____.22、(4分)已知y=++9,则(xy-64)2的平方根为______.23、(4分)当a=-3时,=_____.二、解答题(本大题共3个小题,共30分)24、(8分)(1)分解因式:①②(2)解不等式组,并把解集在数轴上表示出来.25、(10分)在菱形ABCD中,∠ABC=60°,P是射线BD上一动点,以AP为边向右侧作等边△APE,连接CE.(1)如图1,当点P在菱形ABCD内部时,则BP与CE的数量关系是,CE与AD的位置关系是.(2)如图2,当点P在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由;(3)如图2,连接BE,若AB=2,BE=2,求AP的长.26、(12分)甲、乙两家草莓采摘园的草莓品质相同,销售价格也相同.“五一期间”,两家均推出了优惠方案,甲采摘园的优惠方案是:游客进园需购买50元的门票,采摘的草莓六折优惠;乙采摘园的优惠方案是:游客进园不需购买门票,采摘园的草莓超过一定数量后,超过部分打折优惠.优惠期间,设某游客的草莓采摘量为x(千克),在甲采摘园所需总费用为(元),在乙采摘园所需总费用为(元),图中折线OAB表示与x之间的函数关系.(1)甲、乙两采摘园优惠前的草莓销售价格是每千克元;(2)求、与x的函数表达式;(3)在图中画出与x的函数图象,并写出选择甲采摘园所需总费用较少时,草莓采摘量x的范围.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B【解析】如图,过点E作EM⊥BC于点M,EN⊥AB于点N,∵点E是正方形的对称中心,∴EN=EM,EMBN是正方形.由旋转的性质可得∠NEK=∠MEL,在Rt△ENK和Rt△EML中,∠NEK=∠MEL,EN=EM,∠ENK=∠EML,∴△ENK≌△ENL(ASA).∴阴影部分的面积始终等于正方形面积的,即它们重叠部分的面积S不因旋转的角度θ的改变而改变.故选B.2、D【解析】
设勾为x,股为y,根据面积求出xy=2,根据勾股定理求出x2+y2=5,根据完全平方公式求出x﹣y即可.【详解】设勾为x,股为y(x<y),∵大正方形面积为9,小正方形面积为5,∴4×xy+5=9,∴xy=2,∵x2+y2=5,∴y﹣x====1,(x﹣y)2=1,故选:D.本题考查了勾股定理和完全平方公式,能根据已知和勾股定理得出算式xy=2和x2+y2=5是解此题的关键.3、C【解析】
逐一进行判断即可.【详解】A.方程是分式方程,正确,故该选项不符合题意;B.方程是二元二次方程,正确,故该选项不符合题意;C.方程是一元二次方程,错误,故该选项符合题意;D.方程是一元二次方程,正确,故该选项不符合题意;故选:C.本题主要考查方程的概念,掌握一元二次方程,分式方程,二元二次方程,无理方程的概念是解题的关键.4、D【解析】根据二次根式被开方数必须是非负数和分式分母不为0的条件,要使xx-1在实数范围内有意义,必须5、A【解析】试题分析:在Rt△ABC中,∵∠ABC=30°,∴AC=12∵△ABC沿CB向右平移得到△DEF,∴AD=BE,AD∥BE,∴四边形ABED为平行四边形,∵四边形ABED的面积等于8,∴AC•BE=8,即4BE=8,∴BE=1,即平移距离等于1.故选A.考点:平移的性质.6、B【解析】
根据平均数、方差、众数、中位数的定义以及计算公式分别进行解答即可.【详解】解:A、这组数据的平均数是:(2+1+3+2+3)÷5=2.2,故正确;B、这组数据的方差是:[(2−2.2)2+(1−2.2)2+(3−2.2)2+(2−2.2)2+(3−2.2)2]=0.56,故错误;C、3和2都出现了2次,出现的次数最多,则众数是3和2,故正确;D、把这组数据从小到大排列为:1,2,2,3,3,中位数是2,故正确.故选:B.此题主要考查了平均数、方差、众数、中位数的含义和求法,熟练掌握定义和求法是解题的关键,是一道基础题7、C【解析】
连接OB,根过B作BM⊥x轴于M,据勾股定理求出OB,根据矩形的性质得出AC=OB,即可得出答案.【详解】解:连接OB,过B作BM⊥x轴于M,
∵点B的坐标是(1,4),
∴OM=1,BM=4,由勾股定理得:OB=,
∵四边形OABC是矩形,
∴AC=OB,
∴AC=,
故选:C.本题考查了点的坐标、矩形的性质、勾股定理等知识点,能根据矩形的性质得出AC=OB是解此题的关键.8、C【解析】
根据抽样调查、平均数、众数的定义及方差的意义解答可得.【详解】解:A、为了解昆明市中学生的睡眠情况,应该采用抽样调查的方式,此选项错误;B、数据2,1,0,3,4的平均数是2,此选项错误;C、一组数据1,5,3,2,3,4,8的众数是3,此选项正确;D、在连续5次数学周考测试中,两名同学的平均分相同,方差较小的同学数学成绩更稳定,此选项错误;故选C.此题考查了抽样调查、平均数、众数和方差的定义.平均数是所有数据的和除以数据的个数.一组数据中出现次数最多的数据叫做众数.方差是一组数据中各数据与它们的平均数的差的平方的平均数.二、填空题(本大题共5个小题,每小题4分,共20分)9、1.【解析】
根据线段垂直平分线上的点到两端点的距离相等可得AD=BD,根据等边对等角可得∠A=∠ABD,然后表示出∠ABC,再根据等腰三角形两底角相等可得∠C=∠ABC,然后根据三角形的内角和定理列出方程求解即可.【详解】解:∵MN是AB的垂直平分线,∴AD=BD,∴∠A=∠ABD,∵∠DBC=15°,∴∠ABC=∠A+15°,∵AB=AC,∴∠C=∠ABC=∠A+15°,∴∠A+∠A+15°+∠A+15°=180°,解得∠A=1°.故答案为1°10、【解析】
根据方差的意义进行判断.【详解】因为甲组数有波动,而乙组的数据都相等,没有波动,所以>.故答案为:>.此题考查方差,解题关键在于掌握方差的意义.11、1【解析】分析:先将化成最简二次根式,然后根据同类二次根式得到被开方数相同可得出关于a的方程,解出即可.详解:∵与最简二次根式5是同类二次根式,且=1,∴a+1=3,解得:a=1.故答案为1.点睛:本题考查了同类二次根式的定义:化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式.12、y=3x-1【解析】∵y=3x+1的图象沿y轴向下平移2个单位长度,∴平移后所得图象对应的函数关系式为:y=3x+1﹣2,即y=3x﹣1.故答案为y=3x﹣1.13、或或1【解析】
如图所示:①当AP=AE=1时,∵∠BAD=90°,∴△AEP是等腰直角三角形,∴底边PE=AE=;②当PE=AE=1时,∵BE=AB﹣AE=8﹣1=3,∠B=90°,∴PB==4,∴底边AP===;③当PA=PE时,底边AE=1;综上所述:等腰三角形AEP的对边长为或或1;故答案为或或1.三、解答题(本大题共5个小题,共48分)14、(1);(2)或;(3),理由见解析。【解析】
(1)联立两函数即可求出C点坐标;(2)根据题意写出M,D,E的坐标,再根据即可列式求解;(3)过作,交的延长线于,设交于点,得到得为等腰直角三角形,再证明,故可得,即可求解.【详解】(1)联立,解得∴(2)依题意得解得或(3),理由如下:过作,交的延长线于,设交于点易得为等腰直角三角形,易得此题主要考查一次函数的应用,解题的关键是根据题意作出辅助线、熟知一次函数的图像及全等三角形的判定与性质.15、(1)典籍类图书的标价为1元;(2)折叠进去的宽度为2cm【解析】
(1)设典籍类图书的标价为元,根据购买两种图书的数量差是10本,列出方程并解答;(2)矩形面积=(2宽+1+2折叠进去的宽度)×(长+2折叠进去的宽度).【详解】(1)设典籍类图书的标价为元,由题意,得﹣10=.解得x=1.经检验:x=1是原分式方程的解,且符合题意.答:典籍类图书的标价为1元;(2)设折叠进去的宽度为ycm,则(2y+15×2+1)(2y+21)=875,化简得y2+26y﹣56=0,∴y=2或﹣28(不合题意,舍去),答:折叠进去的宽度为2cm.考查了分式方程和一元二次方程的应用,(2)题结合了矩形面积的求法考查了图形的折叠问题,能够得到折叠进去的宽度和矩形纸的长、宽的关系,是解决问题的关键.16、(1)(20﹣2x),(12﹣2x);(2)1【解析】
(1)观察图形根据长宽的变化量用含x的代数式表示即可.(2)根据(1)中代数式列出方程求解,去掉不合题意的取值.【详解】(1)长为(20﹣2x),宽为(12﹣2x)(2)由题意(20﹣2x)(12﹣2x)=180240-64x+4x2=1804x2-64x+60=0x2-16x+15=0(x-15)(x-1)=0解得x1=15(不合题意),x2=1∴x的取值只能是1,即x=1.结合图形观察长宽的变化量,根据一元二次方程求解即可.17、(1)①见解析;②AG=CE,AG⊥CE,理由见解析;(2)CE的长为或【解析】
(1)①根据题意补全图形即可;
②先判断出∠GDA=∠EDC,进而得出△AGD≌△CED,即可得出AG=CE,延长CE分别交AG、AD于点F、H,判断出∠AFH=∠HDC=90°即可得出结论;
(2)分两种情况,①当点G在线段BD的延长线上时,②当点G在线段BD上时,构造直角三角形利用勾股定理即可得出结论.【详解】解:(1)当点E在正方形ABCD内部时,①依题意,补全图形如图1:②AG=CE,AG⊥CE.
理由:
在正方形ABCD,
∴AD=CD,∠ADC=90°,
∵由DE绕着点D顺时针旋转90°得DG,
∴∠GDE=∠ADC=90°,GD=DE,
∴∠GDA=∠EDC
在△AGD和△CED中,,
∴△AGD≌△CED,
∴AG=CE.
如图2,延长CE分别交AG、AD于点F、H,
∵△AGD≌△CED,
∴∠GAD=∠ECD,
∵∠AHF=∠CHD,
∴∠AFH=∠HDC=90°,
∴AG⊥CE.
(2)①当点G在线段BD的延长线上时,如图3所示.
过G作GM⊥AD于M.
∵BD是正方形ABCD的对角线,
∴∠ADB=∠GDM=45°.
∵GM⊥AD,DG=∴MD=MG=2,
∴AM=AD+DM=6
在Rt△AMG中,由勾股定理得:AG==,同(1)可证△AGD≌△CED,
∴CE=AG=
②当点G在线段BD上时,如图4所示,
过G作GM⊥AD于M.
∵BD是正方形ABCD的对角线,
∴∠ADG=45°
∵GM⊥AD,DG=∴MD=MG=2,
∴AM=AD-MD=2
在Rt△AMG中,由勾股定理得:AG==,同(1)可证△AGD≌△CED,
∴CE=AG=.故CE的长为或.此题是四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,勾股定理,解(1)的关键是判断出△AGD≌△CED,解(2)的关键是构造直角三角形,是一道中考常考题.18、(1)AB+CD=2EF;(2)4EF2=AB2+CD2+AB•CD,证明详见解析;(3).【解析】
(1)根据三角形的中位线和全等三角形的判定和性质解答即可;(2)如图2中,作CK⊥BC,连接AF,延长AF交CK于K.连接DK,作DH⊥CK于H.首先证明△AFB≌△KFC,推出AB=CK,再利用勾股定理,三角形的中位线定理即可解决问题;(3)如图3中,以点B为原点,BC为x轴,建立平面直角坐标系如图所示.想办法求出点E、O的坐标即可解决问题;【详解】解:(1)结论:AB+CD=2EF,理由:如图1中,∵点E、点F分别为AD、BC的中点,∴BF=FC,AE=ED,∵AB∥CD,∴∠ABF=∠GCF,∵∠BFA=∠CFG,∴△ABF≌△GCF(ASA),∴AB=CG,AF=FG,∵AE=ED,AF=FG,∴2EF=DG=DC+CG=DC+AB;∴AB+CD=2EF;(2)如图2中,作CK⊥BC,连接AF,延长AF交CK于K.连接DK,作DH⊥CK于H.∵∠ABF=∠KCF,BF=FC,∠AFB=∠CFK,∴△AFB≌△KFC,∴AB=CK,AF=FK,∵∠BCD=150°,∠BCK=90°,∴∠DCK=120°,∴∠DCH=60°,∴CH=CD,DH=CD,在Rt△DKH中,DK2=DH2+KH2=(CD)2+(AB+CD)2=AB2+CD2+AB•CD,∵AE=ED,AF=FK,∴EF=DK,∴4EF2=DK2,∴4EF2=AB2+CD2+AB•CD.(3)如图3中,以点B为原点,BC为x轴,建立平面直角坐标系如图所示.由题意:A(1,1),B(0,0),D(4,2),∵AE=ED,∴E(,),∵AC的解析式为y=-x+,BD的解析式为y=x,由,解得,∴O(,),∴OE==.故答案为(1)AB+CD=2EF;(2)4EF2=AB2+CD2+AB•CD,证明详见解析;(3).本题考查四边形综合题、全等三角形的判定和性质、三角形的中位线定理、解直角三角形、平面直角坐标系、一次函数的应用等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会建立平面直角坐标系解决问题,属于中考压轴题.一、填空题(本大题共5个小题,每小题4分,共20分)19、x<﹣1【解析】
观察函数图象得到当x<-1时,直线y=k1x+b1在直线y=k1x+b1的上方,于是可得到不等式k1x+b1>k1x+b1的解集.【详解】当x<-1时,k1x+b1>k1x+b1,所以不等式k1x+b1>k1x+b1的解集为x<-1.故答案为x<-1.本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.20、x>-1.【解析】
先移项,再合并同类项,化系数为1即可.【详解】移项得,2x>-5+3,合并同类项得,2x>-2,化系数为1得,x>-1.故答案为:x>-1.本题考查的是解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.21、1.【解析】
根据题意先确定x的值,再根据方差公式进行计算即可.【详解】解:当x=10时,有两个众数,而平均数只有一个,不合题意舍去.当众数为8时,根据题意得,解得x=6,则这组数据的方差是:.故答案为1.本题考查了数据的收集和处理,主要考查了众数、平均数和方差的知识,解题时需要理解题意,分类讨论.22、±1【解析】
根据二次根式有意义的条件可得,再解可得x的值,进而可得y的值,然后可得(xy-64)2的平方根.【详解】解:由题意得:,解得:x=7,则y=9,(xy-64)2=1,1的平方根为±1,故答案为:±1.此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.23、1【解析】
把a=-1代入二次根式进行化简即可求解.【详解】解:当a=-1时,=1.
故答案为:1.本题考查二次根式的计算,理解算术平方根的意义是解题的关键.二、解答题(本大题共3个小题,共30分)24、(1)①;②;(2)【解析】
(1)①直接提取公因式3m,再利用完全平方公式分解因式得出答案;②先去括号合并同类项,再利用平方差公式进行计算即可;(2)分别解不等式进而得出不等式组的解;【详解】解:(1)①原式②原式(2)解不等式①,得:解不等式②,得:则不等式组的解集为此题考查提公因式法与公式法分解因式,解一元一次不等式组,在数轴上表示不等式的解集,解题关键在于掌握运算法则.25、(1)BP=CE,CE⊥AD;(2)结论仍然成立,理由见解析;(3)2【解析】
(1)由菱形ABCD和∠ABC=60°可证△ABC与△ACD是等边三角形,由等边△APE可得AP=AE,∠PAE=∠BAC=60°,减去公共角∠PAC得∠BAP=∠CAE,根据SAS可证得△BAP≌△CAE,故有BP=CE,∠ABP=∠ACE.由菱形对角线平分一组对角可证∠ABP=30°,故∠ACE=30°即CE平分∠ACD,由AC=CD等腰三角形三线合一
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年度能源开发与利用合同2篇
- 建筑工程现场垃圾处理服务合同
- 港口金融服务合同
- 水源保护与治理合同
- 2024年小型汽车维修工坊合作合同2篇
- 学校电梯维护保养协议
- 家电制造招投标时间流程
- 财务人员劳资管理实施办法
- 2024年度版权管理合同2篇
- 广告审查项目审批指南
- 内蒙古自治区锡林郭勒盟2024-2025学年高一上学期11月期中 生物试题(含答案)
- 关于健康的课件图片
- 2024年度上海市高校教师资格证之高等教育心理学题库与答案
- 2024秋期国家开放大学本科《会计实务专题》一平台在线形考(形考作业一至四)试题及答案
- 适合全院护士讲课
- 2024年医学高级职称-全科医学(医学高级)考试近5年真题集锦(频考类试题)带答案
- 2024年全国半导体行业职业技能竞赛(智能硬件装调员赛项)理论考试题库(含答案)
- 自然科学基金项目申报书(模板)
- 急救理论知识试题库(附参考答案)
- 批判与创意思考学习通超星期末考试答案章节答案2024年
- 高中语文《荷塘月色》教学课件-新人教版必修2
评论
0/150
提交评论