江苏省宿迁市名校2024年数学九上开学监测模拟试题【含答案】_第1页
江苏省宿迁市名校2024年数学九上开学监测模拟试题【含答案】_第2页
江苏省宿迁市名校2024年数学九上开学监测模拟试题【含答案】_第3页
江苏省宿迁市名校2024年数学九上开学监测模拟试题【含答案】_第4页
江苏省宿迁市名校2024年数学九上开学监测模拟试题【含答案】_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共12页江苏省宿迁市名校2024年数学九上开学监测模拟试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)10名学生的平均成绩是x,如果另外5名学生每人得90分,那么整个组的平均成绩是()A. B. C. D.2、(4分)下面是任意抛掷一枚质地均匀的正六面体骰子所得结果,其中发生的可能性很大的是()A.朝上的点数为 B.朝上的点数为C.朝上的点数为的倍数 D.朝上的点数不小于3、(4分)在实际生活中,我们经常利用一些几何图形的稳定性或不稳定性,下列实物图中利用了稳定性的是()A.电动伸缩门 B.升降台C.栅栏 D.窗户4、(4分)将抛物线向上平移两个单位长度,再向右平移一个单位长度后,得到的抛物线解析式是()A. B. C. D.5、(4分)甲、乙、丙、丁四位选手各射击10次,每人的平均成绩都是9.3环,方差如下表所示:选手甲乙丙丁方差0.0350.0360.0280.015则这四人中成绩最稳定的是()A.甲 B.乙 C.丙 D.丁6、(4分)一个正比例函数的图象经过点,则它的解析式为()A. B. C. D.7、(4分)如图,在△ABC中,点D、E、F分别是BC、AB、AC的中点,如果△ABC的周长为20,那么△DEF的周长是()A.20 B.15 C.10 D.58、(4分)在下列图形中,既是中心对称图形又是轴对称图形的是()A. B. C. D.二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)在矩形纸片ABCD中,AB=5,AD=13.如图所示,折叠纸片,使点A落在BC边上的A¢处,折痕为PQ,当点A¢在BC边上移动时,折痕的端点P、Q也随之移动.若限定点P、Q分别在AB、AD边上移动,则点A¢在BC边上可移动的最大距离为_________.10、(4分)如图,在中,,,点、分别是边、上的动点.连接、,点、分别是、的中点,连接.则的最小值为________.11、(4分)将直线的图象向上平移3个单位长度,得到直线______.12、(4分)在平面内将一个图形绕某一定点旋转________度,图形的这种变化叫做中心对称;13、(4分)一组数据5,7,2,5,6的中位数是_____.三、解答题(本大题共5个小题,共48分)14、(12分)计算:(1)(2)(3)(3+)(3﹣)(4)(﹣3)﹣2+﹣|1﹣2|﹣(﹣3)015、(8分)如图(1),ΔABC为等腰三角形,AB=AC=a,P点是底边BC上的一个动点,PD∕∕AC,PE∕∕AB.(1)用a表示四边形ADPE的周长为;(2)点P运动到什么位置时,四边形ADPE是菱形,请说明理由;(3)如果ΔABC不是等腰三角形图(2),其他条件不变,点P运动到什么位置时,四边形ADPE是菱形(不必说明理由).16、(8分)(2011•南京)小颖和小亮上山游玩,小颖乘坐缆车,小亮步行,两人相约在山顶的缆车终点会合.已知小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍.小颖在小亮出发后50min才乘上缆车,缆车的平均速度为180m/min.设小亮出发xmin后行走的路程为ym,图中的折线表示小亮在整个行走过程中y与x的函数关系.(1)小亮行走的总路程是___________m,他途中休息了_____________min;(2)①当50<x<80时,求y与x的函数关系式;②当小颖到达缆车终点时,小亮离缆车终点的路程是多少?17、(10分)如图,甲、乙两座建筑物的水平距离为,从甲的顶部处测得乙的顶部处的俯角为,测得底部处的俯角为,求甲、乙建筑物的高度和(结果取整数).参考数据:,.18、(10分)已知一次函数.(1)若这个函数的图象经过原点,求a的值.(2)若这个函数的图象经过一、三、四象限,求a的取值范围.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)在中,,,,则斜边上的高为________.20、(4分)如图,在矩形ABCD中,对角线AC、BD相交于点O,点E.F分别是AO、AD的中点,若AC=8,则EF=___.21、(4分)命题“全等三角形的面积相等”的逆命题是__________22、(4分)如图(1),已知小正方形的面积为1,把它的各边延长一倍得新正方形;把正方形边长按原法延长一倍得到正方形如图(2);以此下去⋯⋯,则正方形的面积为_________________.23、(4分)判断下列各式是否成立:=2;=3;=4;=5类比上述式子,再写出两个同类的式子_____、_____,你能看出其中的规律吗?用字母表示这一规律_____,二、解答题(本大题共3个小题,共30分)24、(8分)如图,在四边形中,,是的中点,,,于点.(1)求证:四边形是菱形;(2)若,,求的长.25、(10分)水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤,为保证每天至少售出260斤,张阿姨决定降价销售.(1)若将这种水果每斤的售价降低x元,则每天的销售量是斤(用含x的代数式表示);(2)销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降低多少元?26、(12分)为了落实党的“精准扶贫”政策,A、B两城决定向C,D两乡运送肥料以支持农村生产,已知A、B两城共有肥料500吨,其中A城肥料比B城少100吨,从A城往C、D两乡运肥料的费用分别为20元/吨和25元/吨:从B城往C,D两乡运肥料的费用分别为15元/吨和24元/吨,现C乡需要肥料240吨,D乡需要肥料260吨.(1)A城和B城各有多少吨肥料?(2)设从A城运往C乡肥料x吨,总运费为y元,求y与x的函数关系式.(3)怎样调运才能使总运费最少?并求最少运费.

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、D【解析】

整个组的平均成绩=1名学生的总成绩÷1.【详解】这1个人的总成绩10x+5×90=10x+450,除以1可求得平均值为.故选D.此题考查了加权平均数的知识,解题的关键是求的1名学生的总成绩.2、D【解析】

分别求得各个选项中发生的可能性的大小,然后比较即可确定正确的选项.【详解】A、朝上点数为2的可能性为;B、朝上点数为7的可能性为0;C、朝上点数为3的倍数的可能性为;D、朝上点数不小于2的可能性为.故选D.主要考查可能性大小的比较:只要总情况数目(面积)相同,谁包含的情况数目(面积)多,谁的可能性就大,反之也成立;若包含的情况(面积)相当,那么它们的可能性就相等.3、C【解析】

根据三角形具有稳定性和四边形具有不稳定性进行辨别即可.【详解】A.由平行四边形的特性可知,平行四边形具有不稳定性,所以容易变形,伸缩门运用了平行四边形易变形的特性;B.升降台也是运用了四边形易变形的特性;C.栅栏是由一些三角形焊接而成的,它具有稳定性;D.窗户是由四边形构成,它具有不稳定性.故选C.此题主要考查了平行四边形的特性是容易变形以及三角形具有稳定性.4、D【解析】

由平移可知,抛物线的开口方向和大小不变,顶点改变,将抛物线化为顶点式,求出顶点,再由平移求出新的顶点,然后根据顶点式写出平移后的抛物线解析式.【详解】解:,即抛物线的顶点坐标为,把点向上平移2个单位长度,再向右平移1个单位长度得到点的坐标为,所以平移后得到的抛物线解析式为.故选D.本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.5、D【解析】∵0.036>0.035>0.028>0.015,∴丁最稳定,故选D.6、C【解析】

设该正比例函数的解析式为y=kx(k≠0),再把点(−2,4)代入求出k的值即可.【详解】解:设该正比例函数的解析式为y=kx(k≠0),∵正比例函数的图象经过点(−2,4),∴4=−2k,解得k=−2,∴这个正比例函数的表达式是y=−2x.故选:C.本题考查的是待定系数法求正比例函数的解析式,熟知正比例函数图象上点的坐标一定适合此函数的解析式是解答此题的关键.7、C【解析】试题分析::∵D、E分别是△ABC的边BC、AB的中点,∴DE=AC,同理EF=BC,DF=AB,∴C△DEF=DE+EF+DF=(AC+BC+AB)=×20=1.故选C.考点:三角形的中位线定理8、C【解析】试题分析:根据轴对称图形与中心对称图形的概念可判断出只有C选项符合要求.故选C.考点:1.中心对称图形;2.轴对称图形.二、填空题(本大题共5个小题,每小题4分,共20分)9、1【解析】如图1,当点D与点Q重合时,根据翻折对称性可得A′D=AD=13,在Rt△A′CD中,A′D2=A′C2+CD2,即132=(13-A′B)2+52,解得A′B=1,如图2,当点P与点B重合时,根据翻折对称性可得A′B=AB=5,∵5-1=1,∴点A′在BC边上可移动的最大距离为1.10、【解析】

连接AG,利用三角形中位线定理,可知,求出AG的最小值即可解决问题.【详解】解:如图1,连接,∵点、分别是、的中点,∴,∴的最小值,就是的最小值,当时,最小,如图2,中,,∴,∵,∴,,∴,∴的最小值是.故答案为:.本题考查平行四边形的性质、三角形的中位线定理、垂线段最短等知识,解题的关键是学会添加常用辅助线,本题的突破点是确定EF的最小值,就是AG的最小值,属于中考填空题中的压轴题.11、【解析】

上下平移时只需让的值加减即可.【详解】原直线的,,向上平移3个单位长度得到了新直线,那么新直线的,,所以新直线的解析式为:.故答案为:.考查了一次函数图象与几何变换,要注意求直线平移后的解析式时的值不变,只有发生变化.12、1【解析】

根据中心对称的定义即可求解.【详解】在平面内将一个图形绕某一定点旋转1度,图形的这种变化叫做中心对称.故答案为1.本题考查了中心对称的定义:把一个图形绕着某个点旋转1°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点.掌握定义是解题的关键.13、1【解析】

将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.【详解】解:将数据从小到大排列2,1,1,6,7,

因此中位数为1.

故答案为1本题考查了中位数,正确理解中位数的意义是解题的关键.三、解答题(本大题共5个小题,共48分)14、(1)-;(2)5;(3)4;(5).【解析】

(1)先把二次根式化为最简二次根式,然后合并即可;(2)利用完全平方公式和二次根式的乘法法则运算;(3)利用平方差公式计算;(4)根据负整数指数幂的意义、零指数幂的意义和绝对值的意义计算.【详解】解:(1)原式=2﹣2+﹣3=;(2)原式=2﹣2+3+6=5﹣2+2=5;(3)原式=9﹣5=4;(4)原式=+2+1﹣2﹣1=.本题考查了二次根式的四则混合运算,掌握运算法则是解决本题的关键.15、(1)2a;(2)当P为BC中点时,四边形ADPE是菱形,见解析;(3)P运动到∠A的平分线上时,四边形ADPE是菱形,理由见解析.【解析】

(1)根据平行线的性质和等腰三角形的性质证明∠B=∠DPB,∠C=∠EPC,进而可得DB=DP,PE=EC,从而可得四边形ADPE的周长=AD+DP+PE+AE=AB+AC;(2)当P运动到BC中点时,四边形ADPE是菱形;首先证明四边形ADPE是平行四边形,再证明DP=PE即可得到四边形ADPE是菱形;(3)P运动到∠A的平分线上时,四边形ADPE是菱形,首先证明四边形ADPE是平行四边形,再根据平行线的性质可得∠1=∠3,从而可证出∠2=∠3,进而可得AE=EP,然后可得四边形ADPE是菱形.【详解】(1)∵PD∥AC,PE∥AB,∴∠DPB=∠C,∠EPC=∠B,∵AB=AC,∴∠B=∠C,∴∠B=∠DPB,∠C=∠EPC,∴DB=DP,PE=EC,∴四边形ADPE的周长是:AD+DP+PE+AE=AB+AC=2a;(2)当P运动到BC中点时,四边形ADPE是菱形;∵PD∥AC,PE∥AB,∴四边形ADPE是平行四边形,∴PD=AE,PE=AD,∵PD∥AC,PE∥AB,∴∠DPB=∠C,∠EPC=∠B,∵P是BC中点,∴PB=PC,在△DBP和△EPC中,∠B=∠EPCBP=CP∠C=∠DPB∴△DBP≌△EPC(ASA),∴DP=EC,∵EC=PE,∴DP=EP,∴四边形ADPE是菱形;(3)P运动到∠A的平分线上时,四边形ADPE是菱形,∵PD∥AC,PE∥AB,∴四边形ADPE是平行四边形,∵AP平分∠BAC,∴∠1=∠2,∵AB∥EP,∴∠1=∠3,∴∠2=∠3,∴AE=EP,∴四边形ADPE是菱形.此题考查菱形的判定,等腰三角形的性质,解题关键在于证明∠B=∠DPB,∠C=∠EPC.16、解:(1)3600,20;(2)①当50≤x≤80时,设y与x的函数关系式为y=kx+b,根据题意,当x=50时,y=1950;当x=80时,y=3600∴解得:∴函数关系式为:y=55x﹣1.②缆车到山顶的线路长为3600÷2=11米,缆车到达终点所需时间为11÷180=10分钟小颖到达缆车终点时,小亮行走的时间为10+50=60分钟,把x=60代入y=55x﹣1,得y=55×60﹣1=2500∴当小颖到达缆车终点时,小亮离缆车终点的路程是3600﹣2500=1100米.【解析】略17、甲建筑物的高度约为,乙建筑物的高度约为.【解析】分析:首先分析图形:根据题意构造直角三角形;本题涉及两个直角三角形,应利用其公共边构造关系式,进而可求出答案.详解:如图,过点作,垂足为.则.由题意可知,,,,,.可得四边形为矩形.∴,.在中,,∴.在中,,∴.∴.∴.答:甲建筑物的高度约为,乙建筑物的高度约为.点睛:本题考查解直角三角形的应用--仰角俯角问题,首先构造直角三角形,再借助角边关系、三角函数的定义解题,难度一般.18、(1);(2)【解析】

(1)y=kx+b经过原点则b=0,据此求解;

(2)y=kx+b的图象经过一、三、四象限,k>0,b<0,据此列出不等式组求解即可.【详解】(1)由题意得,,∴.(2)由题意得解得,∴a的取值范围是.考查了一次函数的性质,了解一次函数的性质是解答本题的关键。一、填空题(本大题共5个小题,每小题4分,共20分)19、【解析】

利用面积法,分别以直角边为底和斜边为底,根据三角形面积相等,可以列出方程,解得答案【详解】解:设斜边上的高为h,在Rt△ABC中,利用勾股定理可得:根据三角形面积两种算法可列方程为:解得:h=2.4cm,故答案为2.4cm本题考查勾股定理和利用面积法算垂线段的长度,要熟练掌握.20、2【解析】

由矩形的性质可知:矩形的两条对角线相等,可得BD=AC=8,即可得OD=4,在△AOD中,EF为△AOD的中位线,由此可求的EF的长.【详解】∵四边形ABCD为矩形,∴BD=AC=8,又∵矩形对角线的交点等分对角线,∴OD=4,又∵在△AOD中,EF为△AOD的中位线,∴EF=2.故答案为2.此题考查三角形中位线定理,解题关键在于利用矩形的性质得到BD=AC=821、如果两个三角形的面积相等,那么是全等三角形【解析】

首先分清题设是:两个三角形全等,结论是:面积相等,把题设与结论互换即可得到逆命题.【详解】命题“全等三角形的面积相等”的逆命题是:如果两个三角形的面积相等,那么是全等三角形.故答案为:如果两个三角形的面积相等,那么是全等三角形本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.22、1【解析】

根据条件计算出图(1)正方形A1B1C1D1的面积,同理求出正方形A2B2C2D2的面积,由此找出规律即可求出答案.【详解】图(1)中正方形ABCD的面积为1,把各边延长一倍后,每个小三角形的面积也为1,所以正方形A1B1C1D1的面积为5,图(2)中正方形A1B1C1D1的面积为5,把各边延长一倍后,每个小三角形的面积也为5,所以正方形A2B2C2D2的面积为52=25,由此可得正方形A5B5C5D5的面积为55=1.本题考查图形规律问题,关键在于列出各图形面积找出规律.23、【解析】

类比上述式子,即可两个同类的式子,然后根据已知的几个式子即可用含n的式子将规律表示出来.【详解】,用字母表示这一规律为:,故答案为:,.此题考查二次根式的性质与化简,解题关键在于找到规律.二、解答题(本大题共3个小题,共30分)24、(1)见解析;(2).【解析】

(1)先证明四边形是平行四边形,再由直角三角形斜边的中线等于斜边的一半可得,从而可证四边形是菱形;(2)作,垂足为,根据勾股定理求出BC的长,再利用菱形的性质和三角形的面积公式解答即可.【详解】解:(1),,四边形是平行四边形,,是的中点,,是菱形;(2)作,垂足为,,,,.,.四边形是菱形,,,.此题考查菱形的判

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论