![2022-2024北京重点校高一(上)期末汇编:概率与统计章节综合_第1页](http://file4.renrendoc.com/view14/M0B/1E/09/wKhkGWce5A-AHooTAALfteJZKoA454.jpg)
![2022-2024北京重点校高一(上)期末汇编:概率与统计章节综合_第2页](http://file4.renrendoc.com/view14/M0B/1E/09/wKhkGWce5A-AHooTAALfteJZKoA4542.jpg)
![2022-2024北京重点校高一(上)期末汇编:概率与统计章节综合_第3页](http://file4.renrendoc.com/view14/M0B/1E/09/wKhkGWce5A-AHooTAALfteJZKoA4543.jpg)
![2022-2024北京重点校高一(上)期末汇编:概率与统计章节综合_第4页](http://file4.renrendoc.com/view14/M0B/1E/09/wKhkGWce5A-AHooTAALfteJZKoA4544.jpg)
![2022-2024北京重点校高一(上)期末汇编:概率与统计章节综合_第5页](http://file4.renrendoc.com/view14/M0B/1E/09/wKhkGWce5A-AHooTAALfteJZKoA4545.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第1页/共1页2022-2024北京重点校高一(上)期末汇编概率与统计章节综合一、单选题1.(2023北京昌平高一上期末)已知射击运动员甲击中靶心的概率为,射击运动员乙击中靶心的概率为,且甲、乙两人是否击中靶心互不影响.若甲、乙各射击一次,则至少有一人击中靶心的概率为(
)A. B. C. D.2.(2022北京海淀高一上期末)甲、乙、丙、丁四位同学将代表高一年级参加校运会米接力赛,教练组根据训练情况,安排了四人的交接棒组合.已知该组合三次交接棒失误的概率分别是,,,假设三次交接棒相互独立,则此次比赛中该组合交接棒没有失误的概率是(
)A. B. C. D.二、填空题3.(2024北京人大附中朝阳学校高一上期末)有四张大小相同标有数字的卡片,如图所示.从这四张卡片中随机抽一张,令事件:“抽到卡片上有数字”,,则;已知命题:事件与相互独立,则为命题(用“真”“假”填空)4.(2024北京昌平高一上期末)甲、乙、丙三人投篮的命中率分别为.若三人各投篮一次,则甲、乙、丙三人都投中的概率为;至少有两人投中的概率为.5.(2022北京西城高一上期末)已知甲运动员的投篮命中率为0.7,乙运动员的投篮命中率为0.8,若甲、乙各投篮一次,则恰有一人命中的概率是.6.(2022北京石景山高一上期末)制造一种零件,甲机床的正品率为,乙机床的正品率为.从它们制造的产品中各任抽1件,则两件都是正品的概率是.三、解答题7.(2024北京房山高一上期末)一个问题,甲正确解答的概率为,乙正确解答的概率为.记事件甲正确解答,事件乙正确解答.假设事件与相互独立.(1)求恰有一人正确解答问题的概率;(2)某同学解“求该问题被正确解答的概率”的过程如下:解:“该问题被正确解答”也就是“甲、乙二人中至少有一人正确解答了问题”,所以随机事件“问题被正确解答”可以表示为.所以.请你指出这位同学错误的原因,并给出正确解答过程.8.(2024北京石景山高一上期末)已知甲投篮命中的概率为0.6,乙投篮不中的概率为0.3,乙、丙两人都投篮命中的概率为0.35,假设甲、乙、丙三人投篮命中与否是相互独立的.(1)求丙投篮命中的概率;(2)甲、乙、丙各投篮一次,求甲和乙命中,丙不中的概率;(3)甲、乙、丙各投篮一次,求恰有一人命中的概率.9.(2023北京西城高一上期末)某射手打靶命中9环、10环的概率分别为0.25,0.2.如果他连续打靶两次,且每次打靶的命中结果互不影响.(1)求该射手两次共命中20环的概率;(2)求该射手两次共命中不少于19环的概率.10.(2023北京海淀高一上期末)高考英语考试分为两部分,一部分为听说考试,满分50分,一部分为英语笔试,满分100分.英语听说考试共进行两次,若两次都参加,则取两次考试的最高成绩作为听说考试的最终得分,如果第一次考试取得满分,就不再参加第二次考试.为备考英语听说考试,李明每周都进行英语听说模拟考试训练,下表是他在第一次听说考试前的20次英语听说模拟考试成绩.假设:①模拟考试和高考难度相当;②高考的两次听说考试难度相当;③若李明在第一次考试未取得满分后能持续保持听说训练,到第二次考试时,听说考试取得满分的概率可以达到.4650474849505047484748495049505048504950(1)设事件为“李明第一次英语听说考试取得满分”,用频率估计事件的概率;(2)基于题干中假设,估计李明英语高考听说成绩为满分的概率的最大值.11.(2023北京石景山高一上期末)甲、乙两人进行羽毛球比赛,采取“三局两胜”制,即两人比赛过程中,谁先胜两局即结束比赛,先胜两局的是胜方,另一方是败方.根据以往的数据分析,每局比赛甲胜乙的概率均为,甲、乙比赛没有平局,且每局比赛是相互独立的.(1)求比赛恰进行两局就结束的概率;(2)求这场比赛甲获胜的概率.12.(2022北京海淀高一上期末)某工厂有甲,乙两条相互独立的产品生产线,单位时间内甲,乙两条生产线的产量之比为.现采用分层抽样的方法从甲,乙两条生产线得到一个容量为100的样本,其部分统计数据如下表所示(单位:件).一等品二等品甲生产线76a乙生产线b2(1)写出a,b的值;(2)从上述样本的所有二等品中任取2件,求至少有1件为甲生产线产品的概率;(3)以抽样结果的频率估计概率,现分别从甲,乙两条产品生产线随机抽取10件产品记表示从甲生产线随机抽取的10件产品中恰好有5件一等品的概率,表示从乙生产线随机抽取的10件产品中恰好有5件一等品的概率,试比较和的大小.(只需写出结论)13.(2023北京延庆高一上期末)已知甲的投篮命中率为0.6,乙的投篮命中率为0.7,丙的投篮命中率为0.5,求:(1)甲,乙,丙各投篮一次,三人都命中的概率;(2)甲,乙,丙各投篮一次,恰有两人命中的概率;(3)甲,乙,丙各投篮一次,至少有一人命中的概率.14.(2023北京门头沟高一上期末)甲、乙两名射击运动员进行射击比赛,甲的中靶概率为0.8,甲、乙都中靶的概率为0.72,求下列事件的概率;(1)乙中靶;(2)恰有一人中靶;(3)至少有一人中靶.15.(2023北京怀柔高一上期末)某种有奖销售的饮料,瓶盖内印有“奖励一瓶”或“谢谢购买”字样,购买一瓶若其瓶盖内印有“奖励一瓶”字样即为中奖,中奖概率为.甲、乙、丙三位同学每人购买了一瓶该饮料.(Ⅰ)求三位同学都没有中奖的概率;(Ⅱ)求三位同学中至少有两位没有中奖的概率.
参考答案1.A【分析】根据独立事件的乘法公式和对立事件的概率公式可求出结果.【详解】设甲击中靶心为事件,乙击中靶心为事件,则,,因为与相互独立,所以与也相互独立,则甲、乙都不击中靶心的概率为,所以甲、乙至少有一人击中靶心的概率为.故选:A2.C【分析】根据独立事件概率的乘法公式直接计算即可.【详解】由题意,三次交接棒不失误的概率分别为,,,则该组合交接棒不失误的概率为.故选:C.3./0.75真【分析】根据题意求出;的概率,利用事件相互独立的定义计算出,验证是否相等即可判断.【详解】事件:“抽到卡片上有数字”,,则;,,命题:事件与相互独立是真命题.故答案为:;真.4./15/【分析】根据相互独立事件概率计算公式求得正确答案.【详解】甲、乙、丙三人都投中的概率为.至少有两人投中的概率为.故答案为:;5.0.38/【分析】利用相互独立事件概率乘法公式及互斥事件概率计算公式即求.【详解】∵甲运动员的投篮命中率为0.7,乙运动员的投篮命中率为0.8,∴甲、乙各投篮一次,则恰有一人命中的概率是.故答案为:0.38.6.【分析】由独立事件的乘法公式求解即可.【详解】由独立事件的乘法公式可知,两件都是正品的概率是.故答案为:7.(1)(2)答案见解析【分析】(1)分析可知,事件“恰有一人正确解答”可表示为,利用互斥事件和独立事件的概率公式可求得所求事件的概率;(2)指出该同学作答的错误之处,分析可知,“问题被解答”也就是“甲、乙二人中至少有一人正确解答了问题”,可以表示为,利用互斥事件和独立事件的概率公式可求得所求事件的概率,或利用对立事件和独立事件的概率公式可求得所求事件的概率.【详解】(1)解:事件“恰有一人正确解答”可表示为,因为、互斥,与相互独立,所以.(2)解:该同学错误在于事件、不互斥,而用了互斥事件的概率加法公式.正确的解答过程如下:“问题被解答”也就是“甲、乙二人中至少有一人正确解答了问题”,可以表示为,且、、两两互斥,与相互独立,所以.或者.8.(1)(2)(3)【分析】(1)首先设甲,乙,丙投篮命中分别为事件,根据独立事件概率公式,即可求解;(2)根据(1)的结果,根据公式,即可求解;(3)首先表示3人中恰有1人命中的事件,再根据概率的运算公式,即可求解.【详解】(1)设甲投篮命中为事件,乙投篮命中为事件,丙投篮命中为事件,由题意可知,,,,则,,所以丙投篮命中的概率为;(2)甲和乙命中,丙不中为事件,则,所以甲和乙命中,丙不中的概率为;(3)甲、乙、丙各投篮一次,求恰有一人命中为事件,则,9.(1)0.04(2)0.14【分析】(1)根据相互独立事件概率的乘法公式即可求解,(2)分类讨论,结合独立事件的概率公式即可求解.【详解】(1)两次共命中20环,意味着两次都是命中10环,根据相互独立事件的概率公式可得概率为:(2)第一次9环第二次10环的概率为,第一次10环第二次9环的概率为,两次都是10环的概率为,所以两次共命中不少于19环的概率为10.(1);(2).【分析】(1)根据古典概型公式计算,即可求解;(2)计算出李明第二次英语听说考试取得满分的概率,然后根据题意,由独立事件的乘法公式计算李明英语高考听说成绩为满分的概率的最大值.【详解】(1)依题意,李明在20次英语听说模拟考试中有8次取得满分,取得满分的频率为,所以用频率估计事件的概率为.(2)设事件为“李明第二次英语听说考试取得满分”,事件为“李明高考英语听说考试取得满分”.依题意,,所以,所以如果李明在第一次未取得满分时,坚持训练参加第二次考试,那么他英语高考听说考试最终成绩为满分的概率的最大值可以达到.11.(1)(2)【分析】(1)比赛两局就结束即甲连胜两局或乙连胜两局,分别求概率即可;(2)分别比赛两局结束和比赛三局结束,分别求概率即可.【详解】(1)比赛恰进行两局就结束对应的事件A有两种可能,事件:甲胜乙,事件:乙胜甲.,,.(2)这场比赛甲获胜对应的事件B有两种可能,事件:比赛两局结束且甲获胜;事件:比赛三局结束且甲获胜.,,∴.12.(1);(2);(3).【分析】(1)根据题意列出方程组,从而求出a,b的值;(2记为“至少有1件为甲生产线产品”这一事件,首先列出从6件二等品中任取2件的所有结果,然后再找出事件所包含是基本事件,从而利用古典概型的概率公式即可求出答案.(3)根据样本中甲,乙产品一等品的概率,同时结合二项分布即可比较大小.【详解】(1)由题意,知,解得;(2)记样本中甲生产线的4件二等品为,乙生产线的2件二等品为.从6件二等品中任取2件,所有可能的结果有15个,它们是:,,记为“至少有1件为甲生产线产品”这一事件,则中的结果有1个,它是.所以.(3).13.(1)0.21;(2)0.44;(3)0.94.【分析】(1)根据概率乘法得三人都命中概率为;(2)分甲命中,乙,丙未命中,乙命中,甲,丙未命中,丙命中,乙,丙未命中,三种情况讨论,结合概率乘法和加法公式即可得到答案;(3)采取正难则反的原则,求出其对立事件即三人全未命中的概率,再根据对立事件的概率公式求解即可.【详解】(1)设事件:甲投篮命中;事件:乙投篮命中;事件:丙投篮命中.甲,乙,丙各投篮一次,三人都命中的概率.所以甲,乙,丙各投篮一次,三人都命中的概率为0.21.(2)设事件:恰有两人命中.所以所以甲,乙,丙各投篮一次,恰有两人命中的概率为0.44.(3)设事件:至少有一人命中.所以所以甲,乙,丙各投篮一次,至少有一人命中的概率为0.94.14.(1)0.9(2)0.26(3)0.98【分析】(1)由相互独立事件的乘法公式即可求解;(2)分两种情况考虑即可求解;(3)根据对立事件的概率即可得解.【详解】(1)设甲中靶为事件,乙中靶为事件,则事件与事件相互独立,且,则,即乙中靶的概率为0.9.(2)设恰有一人中靶为事件,则.即恰有一人中靶的概率为0.26.(3)设至少有一人中靶为事件,则,即至少有一人中靶得概率为0.98.1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新型机械加工合同范本
- 消防水箱采购合同范本
- 工程机械租赁合同
- 农庄承包合同
- 装修泥工合同模板
- 影视制作承包合同范本
- 租赁合同铣刨机1
- 车辆租赁服务合同
- 物业管理的咨询与顾问服务
- 衣服租赁合同范本
- 老年外科患者围手术期营养支持中国专家共识(2024版)
- 子宫畸形的超声诊断
- 2024年1月高考适应性测试“九省联考”数学 试题(学生版+解析版)
- JT-T-1004.1-2015城市轨道交通行车调度员技能和素质要求第1部分:地铁轻轨和单轨
- (正式版)JBT 11270-2024 立体仓库组合式钢结构货架技术规范
- DB11∕T 2035-2022 供暖民用建筑室温无线采集系统技术要求
- 《复旦大学》课件
- 针灸与按摩综合疗法
- Photoshop 2022从入门到精通
- T-GDWJ 013-2022 广东省健康医疗数据安全分类分级管理技术规范
- DB43-T 2775-2023 花榈木播种育苗技术规程
评论
0/150
提交评论