2025届甘肃省金昌市永昌县第四中学数学高二上期末复习检测模拟试题含解析_第1页
2025届甘肃省金昌市永昌县第四中学数学高二上期末复习检测模拟试题含解析_第2页
2025届甘肃省金昌市永昌县第四中学数学高二上期末复习检测模拟试题含解析_第3页
2025届甘肃省金昌市永昌县第四中学数学高二上期末复习检测模拟试题含解析_第4页
2025届甘肃省金昌市永昌县第四中学数学高二上期末复习检测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届甘肃省金昌市永昌县第四中学数学高二上期末复习检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数的导数为,则等于()A.0 B.1C.2 D.42.椭圆中以点为中点的弦所在直线斜率为()A. B.C. D.3.已知直线与圆相切,则的值是()A. B.C. D.4.已知集合M={0,x},N={1,2},若M∩N={2},则M∪N=()A.{0,x,1,2} B.{2,0,1,2}C.{0,1,2} D.不能确定5.已知且,则的值为()A.3 B.4C.5 D.66.若一个正方体的全面积是72,则它的对角线长为()A. B.12C. D.67.已知椭圆的左右焦点分别为,,点B为短轴的一个端点,则的周长为()A.20 B.18C.16 D.98.双曲线:的一条渐近线与直线垂直,则它的离心率为()A. B.C. D.9.已知抛物线的焦点为,过点且倾斜角为锐角的直线与交于、两点,过线段的中点且垂直于的直线与的准线交于点,若,则的斜率为()A. B.C. D.10.设,,则与的等比中项为()A. B.C. D.11.如图,双曲线的左,右焦点分别为,,过作直线与C及其渐近线分别交于Q,P两点,且Q为的中点.若等腰三角形的底边的长等于C的半焦距.则C的离心率为()A. B.C. D.12.已知函数的图象如图所示,则不等式的解集为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若,则__________14.如图所示,奥林匹克标志由五个互扣的环圈组成,五环象征五大洲的团结.若从该奥林匹克标志的五个环圈中任取2个,则这2个环圈恰好相交的概率为___________.15.设是数列的前项和,且,则_____________.16.滕王阁,江南三大名楼之一,因初唐诗人王勃所作《滕王阁序》中“落霞与孤鹜齐飞,秋水共长天一色”而名传千古,流芳后世.如图,在滕王阁旁地面上共线的三点,,处测得阁顶端点的仰角分别为,,.且米,则滕王阁高度___________米.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)若在上单调递增,求的取值范围;(2)若在上存在极值点,证明:.18.(12分)△的内角A,B,C的对边分别为a,b,c.已知(1)求角B的大小;(2)若△不为钝角三角形,且,,求△的面积19.(12分)已知函数.(1)当时,证明:函数图象恒在函数的图象的下方;(2)讨论方程的根的个数.20.(12分)已知等比数列的公比,,.(1)求数列的通项公式;(2)令,若,求满足条件的最大整数n.21.(12分)在三棱柱中,侧面正方形的中心为点平面,且,点满足(1)若平面,求的值;(2)求点到平面的距离;(3)若平面与平面所成角的正弦值为,求的值22.(10分)已知三棱柱中,面底面,,底面是边长为的等边三角形,,、分别在棱、上,且.(1)求证:底面;(2)在棱上找一点,使得和面所成角的余弦值为,并说明理由.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】先对函数求导,然后代值计算即可【详解】因为,所以.故选:A2、A【解析】先设出弦的两端点的坐标,分别代入椭圆方程,两式相减后整理即可求得弦所在的直线的斜率【详解】设弦的两端点为,,代入椭圆得两式相减得,即,即,即,即,弦所在的直线的斜率为,故选:A3、D【解析】直线与圆相切,直接通过求解即可.【详解】因为直线与圆相切,所以圆心到直线的距离,所以,.故选:D4、C【解析】集合M={0,x},N={1,2},若M∩N={2},则.所以.故选C.点睛:集合的交集即为由两个集合的公共元素组成的集合,集合的并集即由两集合的所有元素组成.5、C【解析】由空间向量数量积的坐标运算求解【详解】由已知,解得故选:C6、D【解析】根据全面积得到正方体的棱长,再由勾股定理计算对角线.【详解】设正方体的棱长为,对角线长为,则有,解得,从而,解得.故选:D7、B【解析】根据椭圆的定义求解【详解】由椭圆方程知,所以,故选:B8、A【解析】先利用直线的斜率判定一条渐近线与直线垂直,求出,再利用双曲线的离心率公式和进行求解.【详解】因为直线的斜率为,所以双曲线的一条渐近线与直线垂直,所以,即,则双曲线的离心率.故选:A.卷II(非选择题9、C【解析】设直线的方程为,其中,设点、、,将直线的方程与抛物线的方程联立,列出韦达定理,求出、,根据条件可求得的值,即可得出直线的斜率.【详解】抛物线的焦点为,设直线的方程为,其中,设点、、,联立可得,,,所以,,,,直线的斜率为,则直线的斜率为,所以,,因为,则,因为,解得,因此,直线的斜率为.故选:C.10、C【解析】利用等比中项的定义可求得结果.【详解】由题意可知,与的等比中项为.故选:C.11、C【解析】先根据等腰三角形的性质得,再根据双曲线定义以及勾股定理列方程,解得离心率.【详解】连接,由为等腰三角形且Q为的中点,得,由知.由双曲线的定义知,在中,,(负值舍去)故选:C【点睛】本题考查双曲线的定义、双曲线的离心率,考查基本分析求解能力,属基础题.12、D【解析】原不等式等价于,根据的图象判断函数的单调性,可得和的解集,再分情况或解不等式即可求解.【详解】由函数的图象可知:在和上单调递增,在上单调递减,所以当时,;当时,;由可得,所以或,即或,解得:或,所以原不等式的解集为:,故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】分别令和,再将两个等式相加可求得的值.【详解】令,则;令,则.上述两式相加得故答案为:.【点睛】本题考查偶数项系数和的计算,一般令和,通过对等式相加减求得,考查计算能力,属于中等题.14、【解析】利用古典概型求概率.【详解】从该奥林匹克标志的五个环圈中任取2个,共有10种情况,其中这2个环圈恰好相交的情况有4种,则所求的概率.故答案为:.15、【解析】根据题意可知,再利用裂项相消法,即可求出结果.【详解】因为,所以.故答案为:.16、【解析】设,由边角关系可得,,,在和中,利用余弦定理列方程,结合可解得的值,进而可得长.【详解】设,因为,,,所以,,,.在中,,即①.,在中,,即②,因为,所以①②两式相加可得:,解得:,则,故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)证明见解析【解析】(1)由题得,在,上为单调递增的函数,在,上恒成立,分类讨论,再次利用导数研究函数的最值即可;(2)由(1)可知,在存在极值点,则且,求得,再两次求导即可得结论.【小问1详解】由题得,在,上为单调递增的函数,在,上恒成立,设,当时,由,得,在,上为增函数,则,在,上恒成立,满足命题,当时,由,得,在上为减函数,,时,,即,不满足恒成立,不成立,综上:的取值范围为.小问2详解】证明:由(1)可知,在存在极值点,则且即:要证只需证即证又由(1)可知在上为增函数,且,成立.要证只需证即证:设则即在上增函数在为增函数成立.综上,成立.18、(1)或;(2).【解析】(1)根据正弦定理边角关系可得,再由三角形内角的性质求其大小即可.(2)由(1)及题设有,应用余弦定理求得、,最后利用三角形面积公式求△的面积【小问1详解】由正弦定理得:,又,所以,又B为△的一个内角,则,所以或;【小问2详解】由△不为钝角三角形,即,又,,由余弦定理,,得(舍去负值),则∴19、(1)证明见解析(2)答案见解析【解析】(1)构造函数,利用导数判断单调性,并求出函数的最大值小于零,即,即可得证;(2)将方程根的个数转化为函数图象与交点的问题,大致画出函数的图象,即可求解.【小问1详解】设,其中,则,在区间上,单调递减,又∵,即时,,∴,∴在区间上函数的图象恒在函数的图象的下方.【小问2详解】由得,即,令,则,令,得,当时,,单调递增,当时,,单调递减,∴在处取得最小值,∴,又∵当时,,当时,,有零点存在性定理可知函数有唯一的零点,∴的大致图象如图所示,∴当时,方程的根的个数为0;当或时,方程的根的个数为1;当时,方程的根的个数为2.20、(1)(2)【解析】(1)由等比数列的性质可得,结合条件求出,得出公比,从而得出通项公式.(2)由(1)可得,再求出的前项和,从而可得出答案.【小问1详解】由题意可知,有,,得或∴或又,∴∴【小问2详解】,∴∴,又单调递增,所以满足条件的的最大整数为21、(1);(2);(3)或.【解析】(1)连接ME,证明即可计算作答.(2)以为原点,的方向分别为轴正方向建立空间直角坐标系,借助空间向量计算点到平面的距离即可.(3)由(2)中空间直角坐标系,借助空间向量求平面与平面所成角的余弦即可计算作答.【小问1详解】在三棱柱中,因,即点在上,连接ME,如图,因平面面,面面,则有,而为中点,于是得为的中点,所以.【小问2详解】在三棱柱中,面面,则点到平面的距离等于点到平面的距离,又为正方形,即,而平面,以为原点,的方向分别为轴正方向建立空间直角坐标系,如图,依题意,,则,,设平面的法向量为,则,令,得,又,则到平面的距离,所以点到平面的距离为.【小问3详解】因,则,,设面的法向量为,则,令,得,于是得,而平面与平面所成角的正弦值为,则,即,整理得,解得或,所以的值是或.【点睛】易错点睛:空间向量求二面角时,一是两平面的法向量的夹角不一定是所求的二面角,二是利用方程思想进行向量运算,要认真细心,准确计算.22、(1)证明见解析;(2)为的中点,理由见解析.【解析】(1)取的中点,连接,利用面面垂直的性质定理可得出平面,可得出,再由,结合线面垂直的判定定理可证得结论成立;(2)以点为坐标原点,、、的方向分

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论