




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广西南宁市二中2025届高二上数学期末统考模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设椭圆C:的右焦点为F,过原点O的动直线l与椭圆C交于A,B两点,那么的周长的取值范围为()A. B.C. D.2.平面与平面平行的充分条件可以是()A.平面内有一条直线与平面平行B.平面内有两条直线分别与平面平行C.平面内有无数条直线分别与平面平行D平面内有两条相交直线分别与平面平行3.某企业甲车间有200人,乙车间有300人,现用分层抽样的方法在这两个车间中抽取25人进行技能考核,则从甲车间抽取的人数应为()A.5 B.10C.8 D.94.若直线的斜率,则直线的倾斜角的取值范围是()A. B.C. D.5.已知函数的图象如图所示,则不等式的解集为()A. B.C. D.6.命题“,”的否定为()A., B.,C., D.,7.已知点,,则经过点且经过线段AB的中点的直线方程为()A. B.C. D.8.在正方体的12条棱中任选3条,其中任意2条所在的直线都是异面直线的概率为()A. B.C. D.9.直线分别与曲线,交于,两点,则的最小值为()A. B.1C. D.210.《九章算术》第三章“衰分”介绍比例分配问题:“衰分”是按比例递减分配的意思,通常称递减的比例(即百分比)为“衰分比”.如:甲、乙、丙、丁分别分得,,,,递减的比例为,那么“衰分比”就等于,今共有粮石,按甲、乙、丙、丁的顺序进行“衰分”,已知乙分得石,甲、丙所得之和为石,则“衰分比”为()A. B.C. D.11.已知椭圆(a>b>0)的离心率为,则=()A. B.C. D.12.已知是双曲线的左焦点,圆与双曲线在第一象限的交点为,若的中点在双曲线的渐近线上,则此双曲线的离心率是()A. B.2C. D.二、填空题:本题共4小题,每小题5分,共20分。13.记为等比数列的前n项和,若,公比,则______14.函数的图象在点处的切线方程为____.15.已知函数是定义域上的单调递增函数,是的导数且为定义域上的单调递减函数,请写出一个满足条件的函数的解析式___________16.已知等差数列的公差,等比数列的公比q为正整数,若,,且是正整数,则______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某企业搜集了某产品的投人成本x(单位:万元)与销售收入y(单位:万元)的六组数据,并将其绘制成如图所示的散点图.根据散点图可以看出,y与x之间是线性相关的.(1)试用最小二乘法求出y关于x的线性回归方程;(2)若投入成本不高于10万元,则可以根据(1)中的回归方程估计产品销售收入;若投入成本高于10万元,投入成本x(单位:万元)与销售收入y(单位:万元)之间的关系式为.若该企业要追求更高的毛利率(毛利率),试问该企业对该产品的投入成本选择收人7万元更好,还是选择12万元更好?说明你的理由.参考公式:回归方程中斜率和截距的最小二乘估计公式分别为.参考数据:.18.(12分)已知公差不为0的等差数列的前项和为,且,,成等比数列,且.(1)求的通项公式;(2)若,求数列的前n项和.19.(12分)已知函数.(1)若与在处有相同的切线,求实数的取值;(2)若时,方程在上有两个不同的根,求实数的取值范围.20.(12分)阿基米德(公元前287年---公元前212年,古希腊)不仅是著名的哲学家、物理学家,也是著名的数学家,他利用“逼近法”得到椭圆面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.在平面直角坐标系中,椭圆的面积等于,且椭圆的焦距为.(1)求椭圆的标准方程;(2)点是轴上的定点,直线与椭圆交于不同的两点,已知A关于轴的对称点为,点关于原点的对称点为,已知三点共线,试探究直线是否过定点.若过定点,求出定点坐标;若不过定点,请说明理由.21.(12分)如图,在正四棱锥中,为底面中心,,为中点,(1)求证:平面;(2)求:(ⅰ)直线到平面的距离;(ⅱ)求直线与平面所成角的正弦值22.(10分)已知为各项均为正数的等比数列,且,(1)求数列的通项公式;(2)令,求数列前n项和
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据椭圆的对称性椭圆的定义可得,结合的范围求的周长的取值范围.【详解】的周长,又因为A,B两点为过原点O的动直线l与椭圆C的交点,所以A,B两点关于原点对称,椭圆C的左焦点为,则,所以,又因为三点不共线,所以,所以的周长的取值范围为,故选:A.2、D【解析】根据平面与平面平行的判定定理可判断.【详解】对A,若平面内有一条直线与平面平行,则平面与平面可能平行或相交,故A错误;对B,若平面内有两条直线分别与平面平行,若这两条直线平行,则平面与平面可能平行或相交,故B错误;对C,若平面内有无数条直线分别与平面平行,若这无数条直线互相平行,则平面与平面可能平行或相交,故C错误;对D,若平面内有两条相交直线分别与平面平行,则根据平面与平面平行的判定定理可得平面与平面平行,故D正确.故选:D.3、B【解析】根据分层抽样的定义即可求解.【详解】从甲车间抽取的人数为人故选:B4、B【解析】根据斜率的取值范围,结合来求得倾斜角的取值范围.【详解】设倾斜角为,因为,且,所以.故选:B5、D【解析】原不等式等价于,根据的图象判断函数的单调性,可得和的解集,再分情况或解不等式即可求解.【详解】由函数的图象可知:在和上单调递增,在上单调递减,所以当时,;当时,;由可得,所以或,即或,解得:或,所以原不等式的解集为:,故选:D.6、A【解析】利用含有一个量词的命题的否定的定义求解.【详解】因为命题“,”是全称量词命题,所以其否定是存在量词命题,即为,,故选:A7、C【解析】求AB的中点坐标,根据直线所过的两点坐标求直线方程即可.【详解】由已知,AB中点为,又,∴所求直线斜率为,故直线方程为,即故选:C.8、B【解析】根据正方体的性质确定3条棱两两互为异面直线的情况数,结合组合数及古典概率的求法,求任选3条其中任意2条所在的直线是异面直线的概率.【详解】如下图,正方体中如:中任意2条所在的直线都是异面直线,∴这样的3条直线共有8种情况,∴任选3条,其中任意2条所在的直线都是异面直线的概率为.故选:B.9、B【解析】设,,,,得到,用导数法求解.【详解】解:设,,,,则,,,令,则,函数在上单调递减,在上单调递增,时,函数的最小值为1,故选:B10、A【解析】根据题意,设衰分比为,甲分到石,,然后可得和,解出、的值即可【详解】根据题意,设衰分比为,甲分到石,,又由今共有粮食石,按甲、乙、丙、丁的顺序进行“衰分”,已知乙分得90石,甲、丙所得之和为164石,则,,解得:,,故选:A11、D【解析】由离心率得,再由转化为【详解】因为,所以8a2=9b2,所以故选:D.12、A【解析】根据双曲线的几何性质和平面几何性质,建立关于a,b,c的方程,从而可求得双曲线的离心率得选项.【详解】由题意可设右焦点为,因为,且圆:,所以点在以焦距为直径的圆上,则,设的中点为点,则为的中位线,所以,则,又点在渐近线上,所以,且,则,,所以,所以,则在中,可得,,即,解得,所以,故选:A【点睛】方法点睛:(1)求双曲线的离心率时,将提供的双曲线的几何关系转化为关于双曲线基本量的方程或不等式,利用和转化为关于e的方程或不等式,通过解方程或不等式求得离心率的值或取值范围(2)对于焦点三角形,要注意双曲线定义的应用,运用整体代换的方法可以减少计算量二、填空题:本题共4小题,每小题5分,共20分。13、4【解析】根据给定条件列式求出数列的首项即可计算作答.【详解】依题意,,解得,所以.故答案为:414、【解析】先求出导函数,进而根据导数的几何意义求出切线的斜率,然后求出切线方程.【详解】由题意,,,则切线方程为:.故答案为:.15、(答案不唯一)【解析】由题意可得0,结合在定义域上为减函数可取.【详解】因为在定义域为单调增函数所以在定义域上0,又因为在定义域上为减函数,且大于等于0.所以可取(),(),满足条件所以可为().故答案为:(答案不唯一).16、【解析】由已知等差、等比数列以及,,是正整数,可得,结合q为正整数,进而求.【详解】由,,令,其中m为正整数,有,又为正整数,所以当时,解得,当时,解得不是正整数,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)该企业对该产品的投入成本选择收人12万元更好,理由见解析.【解析】(1)根据公式计算出和,求出线性回归方程;(2)分别求出投入成本7万和12万时的毛利率,比较出大小即可得到答案.【小问1详解】,,,所以y关于x的线性回归方程为;【小问2详解】该企业对该产品的投入成本选择收人12万元更好,理由如下:当时,,此时毛利率为×100%≈34%;当时,,此时毛利率为=40%,因为40%>34%,所以该企业对该产品的投入成本选择收人12万元更好.18、(1)(2)【解析】(1)根据等差数列的通项公式和等比中项,可得,再根据等差数列的前项和公式,即可求出,,进而求出结果;(2)由(1)得,结合等比数列前项和公式和对数运算性质,利用分组求和,即可求出结果.【小问1详解】解:设的公差为,由,,成等比数列可知,即,化简得.由可得,所以.将代入,得,,所以.小问2详解】解:由(1)得,所以.19、(1)(2)【解析】(1)根据导数的几何意义求得函数在处的切线方程,再由有相同的切线这一条件即可求解;(2)先分离,再研究函数的单调性,最后运用数形结合的思想求解即可.【小问1详解】设公切线与的图像切于点,f'(x)=1+lnx⇒f由题意得:;【小问2详解】当时,,①,①式可化为为,令令,,在上单调递增,在上单调递减.,当时,由题意知:20、(1);(2)直线恒过定点.【解析】(1)根据椭圆的焦距可求出,由椭圆的面积等于得,求出,即可求出椭圆的标准方程;(2)设直线,,进而写出为,两点坐标,将直线与椭圆的方程联立,根据韦达定理求,,由三点共线可知,将,代入并化简,得到的关系式,分析可知经过的定点坐标.【详解】(1)椭圆的面积等于,,,椭圆的焦距为,,,椭圆方程为(2)设直线,,则,,三点共线,得,直线与椭圆交于两点,,,,由,得,,,代入中,,,当,直线方程为,则重合,不符合题意;当时,直线,所以直线恒过定点.21、(1)证明见解析;(2)(i);(ii).【解析】(1)连接,以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,利用空间向量法可证得结论成立;(2)(i)利用空间向量法可求得直线到平面的距离;(ii)利用空间向量法可求得直线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025商业合作合同模板下载
- 2025标准版国内航空、公路货物运输保险合同
- 2024年二月份全屋防弹玻璃安装特殊场所租赁合同
- 宅改政策培训
- 买卖纠纷合同标准文本
- 2025办公场所租赁合同
- 保温门合同标准文本
- 新兴领域人才挖掘计划
- 学校艺术教育的成果呈现计划
- 临时合作合同标准文本标准文本
- 西方文化概论(第二版)课件全套 曹顺庆 第0-6章 绪论 西方文化的渊源与流变、西方文学 -西方社会生活与习俗
- 某地区现代有轨电车施工方案
- GB/T 6974.3-2024起重机术语第3部分:塔式起重机
- DB11T 2103.1-2023 社会单位和重点场所消防安全管理规范 第1部分:通则
- 物业品质巡查管理制度
- 高中物理-《互感与自感》课件-新人教版选修3
- 养殖林麝合作协议书模板
- 钢铁项目环评报告 - 2工程分析
- 大学数学《概率论与数理统计》说课稿
- 旅行社安全教育培训制度
- DL 5190.2-2019 电力建设施工技术规范 第2部分:锅炉机组
评论
0/150
提交评论