四川省眉山市青神中学2025届高二上数学期末考试模拟试题含解析_第1页
四川省眉山市青神中学2025届高二上数学期末考试模拟试题含解析_第2页
四川省眉山市青神中学2025届高二上数学期末考试模拟试题含解析_第3页
四川省眉山市青神中学2025届高二上数学期末考试模拟试题含解析_第4页
四川省眉山市青神中学2025届高二上数学期末考试模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省眉山市青神中学2025届高二上数学期末考试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知P是椭圆上的一点,是椭圆的两个焦点且,则的面积是()A. B.2C. D.12.在各项均为正数等比数列中,若成等差数列,则=()A. B.C. D.3.圆心为的圆,在直线x﹣y﹣1=0上截得的弦长为,那么,这个圆的方程为()A. B.C. D.4.已知,,,,则()A. B.C. D.5.已知五个数据3,4,x,6,7的平均数是x,则该样本标准差为()A.1 B.C. D.26.已知动圆过定点,并且与定圆外切,则动圆的圆心的轨迹是()A.抛物线 B.椭圆C.双曲线 D.双曲线的一支7.已知数列是各项均为正数的等比数列,若,则公比()A. B.2C.2或 D.48.如图,正四棱柱是由四个棱长为1的小正方体组成的,是它的一条侧棱,是它的上底面上其余的八个点,则集合的元素个数()A.1 B.2C.4 D.89.用反证法证明命题“a,b∈N,如果ab可以被5整除,那么a,b至少有1个能被5整除.”假设内容是()A.a,b都能被5整除 B.a,b都不能被5整除C.a不能被5整除 D.a,b有1个不能被5整除10.在直三棱柱中,,且,点是棱上的动点,则点到平面距离的最大值是()A. B.C.2 D.11.圆与圆的位置关系为()A.外切 B.内切C.相交 D.相离12.已知x>0、y>0,且1,若恒成立,则实数m的取值范围为()A.(1,9) B.(9,1)C.[9,1] D.(∞,1)∪(9,+∞)二、填空题:本题共4小题,每小题5分,共20分。13.若函数解析式,则使得成立的的取值范围是___________.14.设,则_________15.记为等差数列的前n项和.若,则__________16.已知过椭圆上的动点作圆(为圆心):的两条切线,切点分别为,若的最小值为,则椭圆的离心率为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,四边形是某半圆柱的轴截面(过上下底面圆心连线的截面),线段是该半圆柱的一条母线,点为线的中点(1)证明:;(2)若,且点到平面的距离为1,求线段的长18.(12分)记为数列的前项和,且(1)求的通项公式;(2)设,求数列的前项和19.(12分)已知函数(1)讨论函数的单调性;(2)若对任意的,都有成立,求的取值范围20.(12分)二项式展开式中第五项的二项式系数是第三项系数的4倍.求:(1);(2)展开式中的所有的有理项.21.(12分)如图所示在多面体中,平面,四边形是正方形,,,,.(1)求证:直线平面;(2)求平面与平面夹角的余弦值.22.(10分)已知直线与圆.(1)当直线l恰好平分圆C的周长时,求m的值;(2)当直线l被圆C截得的弦长为时,求m的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】设,先求出m、n,再利用面积公式即可求解.【详解】在中,设,则,解得:.因为,所以,所以的面积是.故选:A2、A【解析】利用等差中项的定义以及等比数列的通项公式即可求解.【详解】设等比数列的公比为,∵成等差数列,∴,即,解得或(舍去),∴,故选:.3、A【解析】由垂径定理,根据弦长的一半及圆心到直线的距离求出圆半径,即可写出圆的标准方程.【详解】圆心到直线x﹣y﹣1=0的距离弦长,设圆半径为r,则故r=2则圆的标准方程为故选:A【点睛】本题主要考查直线与圆的位置关系和圆的标准方程,属于基础题.4、D【解析】根据对数函数的性质和幂函数的单调性可得正确的选项.【详解】因为,故,故,又,在上的增函数,故,故,故选:D.5、B【解析】先求出的值,然后利用标准差公式求解即可【详解】解:因为五个数据3,4,x,6,7的平均数是x,所以,解得,所以标准差,故选:B6、D【解析】结合双曲线定义的有关知识确定正确选项.【详解】圆圆心为,半径为,依题意可知,结合双曲线的定义可知,的轨迹为双曲线的一支.故选:D7、B【解析】由两式相除即可求公比.【详解】设等比数列的公比为q,∵其各项均为正数,故q>0,∵,∴,又∵,∴=4,则q=2.故选:B.8、A【解析】用空间直角坐标系看正四棱柱,根据向量数量积进行计算即可.【详解】建立空间直角坐标系,为原点,正四棱柱的三个边的方向分别为轴、轴和看轴,如右图示,,设,则AB所以集合,元素个数为1.故选:A.9、B【解析】由于反证法是命题的否定的一个运用,故用反证法证明命题时,可以设其否定成立进行推证.命题“a,b∈N,如果ab可被5整除,那么a,b至少有1个能被5整除.”的否定是“a,b都不能被5整除”考点:反证法10、D【解析】建立空间直角坐标系,设出点的坐标,运用点到平面的距离公式,求出点到平面距离的最大值.【详解】解:以为原点,分别以,,所在直线为,,轴建立如图所示的空间直角坐标第,则,,,设点,故,,.设设平面的法向量为,则即,取,则.所以点到平面距离.当,即时,距离有最大值为.故选:D.【点睛】本题考查空间内点到面的距离最值问题,属于中档题.11、A【解析】根据两圆半径和、差、圆心距之间的大小关系进行判断即可.【详解】由,该圆的圆心为,半径为.圆圆心为,半径为,因为两圆的圆心距为,两圆的半径和为,所以两圆的半径和等于两圆的圆心距,因此两圆相外切,故选:A12、B【解析】应用基本不等式“1”的代换求的最小值,注意等号成立条件,再根据题设不等式恒成立有,解一元二次不等式求解集即可.【详解】由题设,,当且仅当时等号成立,∴要使恒成立,只需,故,∴.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由题意先判断函数为偶函数,再利用的导函数判断在上单调递增,根据偶函数的对称性得上单调递减.要使成立,即,解不等式即可得到答案.【详解】,,为偶函数,当时,,故函数在上单调递增.为偶函数,在上单调递减.要使成立,即.故答案为:.14、【解析】求出函数的导数,再令,即可得出答案.【详解】解:由,得,所以.故答案为:.15、【解析】因为是等差数列,根据已知条件,求出公差,根据等差数列前项和,即可求得答案.【详解】是等差数列,且,设等差数列的公差根据等差数列通项公式:可得即:整理可得:解得:根据等差数列前项和公式:可得:.故答案:.【点睛】本题主要考查了求等差数列的前项和,解题关键是掌握等差数列的前项和公式,考查了分析能力和计算能力,属于基础题.16、【解析】由椭圆方程和圆的方程可确定椭圆焦点、圆心和半径;当最小时,可知,此时;根据椭圆性质知,解方程可求得,进而得到离心率.【详解】由椭圆方程知其右焦点为;由圆的方程知:圆心为,半径为;当最小时,则最小,即,此时最小;此时,;为椭圆右顶点时,,解得:,椭圆的离心率.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】(1)先证明,,利用判定定理证明平面,从而得到;(2)设,利用等体积法,由由,解出a.【详解】(1)证明:由题意可知平面,平面∴∵所对为半圆直径∴∴和是平面内两条相交直线∴平面平面∴(2)设,因为,且所以,设,在等腰直角三角形中,取BC的中点E,连结AE,则,取BC1的中点为P,连结DP,∵,∴,又为的中点,∴,∴,即的高为∴,∵,且∴平面,∵平面,且即到平面的距离为1,而由,即解得:,即.【点睛】立体几何解答题(1)第一问一般是几何关系的证明,用判定定理;(2)第二问是计算,求角或求距离(求体积通常需要先求距离).如果求体积,常用的方法有:(1)直接法;(2)等体积法;(3)补形法;(4)向量法.18、(1)(2)【解析】(1)利用,再结合等比数列的概念,即可求出结果;(2)由(1)可知数列是以为首项,公差为的等差数列,根据等差数列的前项和公式,即可求出结果.【小问1详解】解:当时,,解得;当且时,所以所以是以为首项,为公比的等比数列所以;【小问2详解】解:由(1)可知,所以,又,所以数列是以为首项,公差为的等差数列,所以数列的前项和.19、(1)答案见解析;(2).【解析】(1)求,分别讨论不同范围下的正负,分别求单调性;(2)由(1)所求的单调性,结合,分别求出的范围再求并集即可.【详解】解:(1)由已知定义域为,当,即时,恒成立,则在上单调递增;当,即时,(舍)或,所以在上单调递减,在上单调递增.所以时,在上单调递增;时,在上单调递减,在上单调递增.(2)由(1)可知,当时,在上单调递增,若对任意的恒成立,只需,而恒成立,所以成立;当时,若,即,则在上单调递增,又,所以成立;若,则在上单调递减,在上单调递增,又,所以,,不满足对任意的恒成立.所以综上所述:.20、(1)6;(2),,【解析】(1)先得到二项展开式的通项,再根据第五项的二项式系数是第三项系数的4倍,建立方程求解.(2)根据(1)的通项公式求解.【详解】(1)二项展开式的通项.依题意得,,所以,解得.(2)由(1)得,当,3,6时为有理项,故有理有,,.【点睛】本题主要考查二项式定理的通项公式,还考查了运算求解的能力,属于基础题.21、(1)证明见解析;(2).【解析】(1)以点为坐标原点,分别以、、为、、轴建立空间直角坐标系,利用空间向量法可证明出直线平面;(2)利用空间向量法可求得平面与平面夹角的余弦值.【小问1详解】证明:因为平面,,以点为坐标原点,分别以、、为、、轴建立空间直角坐标系,则、、、、、,所以,,,设平面的法向量为,依题意有,即,令,可得,,则,平面,因此,平面.【小问2详解】解:由题,,设平面的法向

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论