江苏省淮安市清江浦区2024-2025学年九年级数学第一学期开学综合测试模拟试题【含答案】_第1页
江苏省淮安市清江浦区2024-2025学年九年级数学第一学期开学综合测试模拟试题【含答案】_第2页
江苏省淮安市清江浦区2024-2025学年九年级数学第一学期开学综合测试模拟试题【含答案】_第3页
江苏省淮安市清江浦区2024-2025学年九年级数学第一学期开学综合测试模拟试题【含答案】_第4页
江苏省淮安市清江浦区2024-2025学年九年级数学第一学期开学综合测试模拟试题【含答案】_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共7页江苏省淮安市清江浦区2024-2025学年九年级数学第一学期开学综合测试模拟试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)在长度为1的线段上找到两个黄金分割点P,Q,则PQ=()A. B. C. D.2、(4分)方程的解是()A. B., C., D.,3、(4分)平行四边形中,若,则的度数为().A. B. C. D.4、(4分)在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是()A.测量对角线,看是否互相平分B.测量两组对边,看是否分别相等C.测量对角线,看是否相等D.测量对角线的交点到四个顶点的距离,看是否都相等5、(4分)如图,平行四边形ABCD中,EF∥BC,GH∥AB,EF,GH相交于点O,则图中有平行四边形()A.4个 B.5个 C.8个 D.9个6、(4分)如图1,将正方形置于平面直角坐标系中,其中边在轴上,其余各边均与坐标轴平行.直线沿轴的负方向以每秒1个单位的速度平移,在平移的过程中,该直线被正方形的边所截得的线段长为,平移的时间为(秒),与的函数图象如图2所示,则图2中的值为()A. B. C. D.7、(4分)如图,在平行四边形中,和的平分线交于边上一点,且,,则的长是()A.3 B.4 C.5 D.2.58、(4分)若A(x1,y1)、B(x2,y2)是一次函数y=ax+x-2图像上的不同的两点,记,则当m<0时,a的取值范围是()A.a<0 B.a>0 C.a<-1 D.a>-1二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,在矩形ABCD中,AB=6,BC=4,将矩形沿AC折叠,点D落在处,则重叠部分△AFC的面积为___________10、(4分)学校位于小亮家北偏东35方向,距离为300m,学校位于大刚家南偏东85°方向,距离也为300m,则大刚家相对于小亮家的位置是________.11、(4分)八年级(3班)同学要在广场上布置一个矩形花坛,计划用鲜花摆成两条对角线.如果一条对角线用了20盆红花,还需要从花房运来_______盆红花.如果一条对角线用了25盆红花,还需要从花房运来_______盆红花.12、(4分)顺次连接等腰梯形各边中点所得的四边形是_____.13、(4分)如图是一种贝壳的俯视图,点C分线段AB近似于黄金分割(AC>BC).已知AB=10cm,则AC的长约为__________cm.(结果精确到0.1cm)三、解答题(本大题共5个小题,共48分)14、(12分)某市对八年级部分学生的数学成绩进行了质量监测(分数为整数,满分100分),根据质量监测成绩(最低分为53分)分别绘制了如下的统计表和统计图分数59.5分以下59.5分以上69.5分以上79.5分以上89.5分以上人数34232208(1)求出被调查的学生人数,并补全频数直方图;(2)若全市参加质量监测的学生大约有4500人,请估计成绩优秀的学生约有多少人?(80分及80分以上为优秀)15、(8分)已知5x+y=2,5y﹣3x=3,在不解方程组的条件下,求3(x+3y)2﹣12(2x﹣y)2的值.16、(8分)解不等式组:,并把它的解集在数轴上表示出来.17、(10分)如图,在▱ABCD中,AC、BD交于点O,BD⊥AD于点D,将△ABD沿BD翻折得到△EBD,连接EC、EB.(1)求证:四边形DBCE是矩形;(2)若BD=4,AD=3,求点O到AB的距离.18、(10分)如图,某小区有一块长为30m,宽为24m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为480m2,两块绿地之间及周边有宽度相等的人行通道,则人行通道的宽度为多少米?B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)马拉松赛选手分甲、乙两组运动员进行了艰苦的训练,他们在相同条件下各10次比赛,成绩的平均数相同,方差分别为0.25,0.21,则成绩较为稳定的是_________(选填“甲”或“乙)20、(4分)如图所示,四边形ABCD为矩形,点O为对角线的交点,∠BOC=120°,AE⊥BO交BO于点E,AB=4,则BE等于_____.21、(4分)已知,化简:__________.22、(4分)已知,如图,矩形ABCD中,E,F分别是AB,AD的中点,若EF=5,则AC=_____.23、(4分)样本容量为80,共分为六组,前四个组的频数分别为12,13,15,16,第五组的频率是0.1,那么第六组的频率是_____.二、解答题(本大题共3个小题,共30分)24、(8分)甲乙两人同时登山,甲乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山的速度是米/分钟,乙在A地提速时距地面的高度b为米.(2)若乙提速后,乙的速度是甲登山速度的3倍,请求出乙提速后y和x之间的函数关系式.(3)登山多长时间时,乙追上了甲,此时乙距A地的高度为多少米?25、(10分)如图,在正方形方格纸中,线段AB的两个端点和点P都在小方格的格点上,分别按下列要求画格点四边形.(1)在图甲中画一个以AB为边的平行四边形,使点P落在AB的对边上(不包括端点).(2)在图乙中画一个以AB为对角线的菱形,使点P落在菱形的内部(不包括边界).26、(12分)甲、乙两组同学进行一分钟引体向上测试,评分标准规定,做6个以上含6个为合格,做9个以上含9个为优秀,两组同学的测试成绩如下表:成绩个456789甲组人125214乙组人114522现将两组同学的测试成绩绘制成如下不完整的统计图表:统计量平均数个中位数众数方差合格率优秀率甲组a66乙组b7将条形统计图补充完整;统计表中的______,______;人说甲组的优秀率高于乙组优秀率,所以甲组成绩比乙组成绩好,但也有人说乙组成绩比甲组成绩好,请你给出两条支持乙组成绩好的理由.

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】【分析】先根据黄金分割的定义得出较长的线段AP=BQ=AB,再根据PQ=AP+BQ-AB,即可得出结果.【详解】:根据黄金分割点的概念,可知AP=BQ=,则PQ=AP+BQ-AB=故选:C【点睛】此题主要是考查了黄金分割的概念:把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,他们的比值()叫做黄金比.熟记黄金分割分成的两条线段和原线段之间的关系,能够熟练求解.2、C【解析】

把方程两边的看作一个整体,进行移项、合并同类项的化简,即可通过因式分解法求得一元二次方程的解.【详解】方程经移项、合并同类项后,化简可得:,即,则解为,故选C.本题考查一元二次方程的化简求解,要掌握因式分解法.3、B【解析】

根据平行四边形的性质:邻角互补,对角线相等即可解答【详解】在平行四边形中,∴,故选:B.本题考查平行四边形的性质,解题关键是熟练掌握平行四边形的角的性质:邻角互补,对角线相等.4、D【解析】

根据矩形的判定定理有:(1)有一个角是直角的平行四边形是矩形;(2)有三个角是直角的四边形是矩形;(3)对角线互相平分且相等的四边形是矩形.【详解】解:A、对角线是否相互平分,能判定平行四边形,故本选项错误;B、两组对边是否分别相等,能判定平行四边形,故本选项错误;C、对角线相等的四边形不一定是矩形,不能判定形状,故本选项错误;D、根据对角线相等且互相平分四边形是矩形,可知量出对角线的交点到四个顶点的距离,看是否相等,可判断是否是矩形.故本选项正确.故选:D.本题考查的是矩形的判定定理,牢记矩形的判定方法是解答本题的关键,难度较小.5、D【解析】

首先根据已知条件找出图中的平行线段,然后根据两组对边分别平行的四边形是平行四边形,来判断图中平行四边形的个数.【详解】∵四边形ABCD是平行四边形,∴AD∥BC,CD∥AB,又∵EF∥BC,GH∥AB,∴∴AB∥GH∥CD,AD∥EF∥BC,∴平行四边形有:□ABCD,□ABHG,□CDGH,□BCFE,□ADFE,□AGOE,□BEOH,□OFCH,□OGDF,共9个.即共有9个平行四边形.故选D.本题考查平行四边形的判定与性质,解题的关键是根据已知条件找出图中的平行线段.6、A【解析】

根据题意可分析出当t=2时,l经过点A,从而求出OA的长,l经过点C时,t=12,从而可求出a,由a的值可求出AD的长,再根据等腰直角三角形的性质可求出BD的长,即b的值.【详解】解:连接BD,如图所示:直线y=x﹣3中,令y=0,得x=3;令x=0,得y=﹣3,即直线y=x﹣3与坐标轴围成的△OEF为等腰直角三角形,∴直线l与直线BD平行,即直线l沿x轴的负方向平移时,同时经过B,D两点,由图2可得,t=2时,直线l经过点A,∴AO=3﹣2×1=1,∴A(1,0),由图2可得,t=12时,直线l经过点C,∴当t=+2=7时,直线l经过B,D两点,∴AD=(7﹣2)×1=5,∴在等腰Rt△ABD中,BD=,即当a=7时,b=.故选A.一次函数与勾股定理在实际生活中的应用是本题的考点,根据题意求出AD的长是解题的关键.7、D【解析】

由▱ABCD中,∠ABC和∠BCD的平分线交于AD边上一点E,易证得△ABE,△CDE是等腰三角形,△BEC是直角三角形,则可求得BC的长,继而求得答案.【详解】∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD,AD=BC,∴∠AEB=∠CBE,∠DEC=∠BCE,∠ABC+∠DCB=90°,∵BE,CE分别是∠ABC和∠BCD的平分线,∴∠ABE=∠CBE=∠ABC,∠DCE=∠BCE=∠DCB,∴∠ABE=∠AEB,∠DCE=∠DEC,∠EBC+∠ECB=90°,∴AB=AE,CD=DE,∴AD=BC=2AB,∵BE=4,CE=3,∴BC=,∴AB=BC=2.5.故选D.此题考查了平行四边形的性质、等腰三角形的判定与性质以及直角三角形的性质.注意证得△ABE,△CDE是等腰三角形,△BEC是直角三角形是关键.8、C【解析】

∵A(x1,y1)、B(x2,y2)是一次函数图象上的不同的两点,,

∴该函数图象是y随x的增大而减小,

∴a+1<0,

解得a<-1,

故选C.此题考查了一次函数图象上点的坐标特征,要根据函数的增减性进行推理,是一道基础题.二、填空题(本大题共5个小题,每小题4分,共20分)9、【解析】

因为BC为AF边上的高,要求△AFC的面积,求得AF即可,求证△AFD′≌△CFB,得BF=D′F,设D′F=x,则在Rt△AFD′中,根据勾股定理求x,则AF=AB−BF.【详解】解:由于折叠可得:AD′=BC,∠D′=∠B,又∠AFD′=∠CFB,∴△AFD′≌△CFB(AAS),∴D′F=BF,设D′F=x,则AF=6−x,在Rt△AFD′中,(6−x)2=x2+42,解之得:x=,∴AF=AB−FB=6−=,∴S△AFC=•AF•BC=.故答案为:.本题考查了勾股定理的正确运用,本题中设D′F=x,根据直角三角形AFD′中运用勾股定理求x是解题的关键.10、北偏西25°方向距离为300m【解析】

根据题意作出图形,即可得到大刚家相对于小亮家的位置.【详解】如图,根据题意得∠ACD=35°,∠ABE=85°,AC=AB=300m由图可知∠CBE=∠BCD,∵AB=AC,∴∠ABC=∠ACB,即∠ABE-∠CBE=∠ACD+∠BCD,∴85°-∠CBE=35°+∠CBE,∴∠CBE=25°,∴∠ABC=∠ACB=60°,∴△ABC为等边三角形,则BC=300m,∴大刚家相对于小亮家的位置是北偏西25°方向距离为300m故填:北偏西25°方向距离为300m.此题主要考查方位角的判断,解题的关键是根据题意作出图形进行求解.11、201【解析】

根据矩形的对角线相等且互相平分,即可得出结果.【详解】解:如果一条对角线用了20盆红花,还需要从花房运来20盆红花;理由如下:

∵矩形的对角线互相平分且相等,

∴一条对角线用了20盆红花,

∴还需要从花房运来红花20盆;

如果一条对角线用了25盆红花,还需要从花房运来1盆红花;理由如下:

一条对角线用了25盆红花,中间一盆为对角线交点,25-1=1,

∴还需要从花房运来红花1盆,

故答案为:20,1.本题考查矩形的性质,解题关键是熟练掌握矩形的对角线互相平分且相等的性质.12、菱形【解析】

解:顺次连接等腰梯形各边中点所得的四边形是菱形,理由为:

已知:等腰梯形ABCD,E、F、G、H分别为AD、AB、BC、CD的中点,

求证:四边形EFGH为菱形.

证明:连接AC,BD,

∵四边形ABCD为等腰梯形,

∴AC=BD,

∵E、H分别为AD、CD的中点,

∴EH为△ADC的中位线,

∴EH=AC,EH∥AC,

同理FG=AC,FG∥AC,

∴EH=FG,EH∥FG,

∴四边形EFGH为平行四边形,

同理EF为△ABD的中位线,

∴EF=BD,又EH=AC,且BD=AC,∴EF=EH,则四边形EFGH为菱形.

故答案为菱形.13、6.2【解析】

根据黄金分割的计算公式正确计算即可.【详解】∵点C分线段AB近似于黄金分割点(AC>BC),∴AC=,∵AB=10cm,∴AC=,故答案为:6.2.此题考查黄金分割点的计算公式,正确掌握公式是解题的关键.三、解答题(本大题共5个小题,共48分)14、(1)见解析;(2)2800人.【解析】

(1)根据图中所列的表,参加测试的总人数为59.5分以上和59.5分以下的和;根据直方图,再根据总人数,即可求出在76.5-84.5分这一小组内的人数;(2)根据成绩优秀的学生所占的百分比,再乘以4500即可得出成绩优秀的学生数.【详解】解:(1)被调查的学生人数为3+42=45人,76.5~84.5的人数为45﹣(3+7+10+8+5)=12人,补全频数直方图如下:(2)估计成绩优秀的学生约有4500×=2800人.本题考查了频数(率)分布直方图,用样本估计总体,牢牢掌握这些是解答本题的关键.15、1.【解析】

将原式进行因式分解,便可转化为已知的代数式组成的式子,进而整体代入,便可求得其值.【详解】原式=3[(x+3y)2﹣4(2x﹣y)2]=3[(x+3y)+2(2x﹣y)](x+3y)﹣2(2x﹣y)]=3(5x+y)(5y﹣3x),∵5x+y=2,5y﹣3x=3,∴原式=3×2×3=1.本题主要考查了因式分解,求代数式的值,整体思想,正确地进行因式分解,将未知代数式转化为已知代数式的式子,是本题解题的关键所在.16、不等式组的解集是,数轴表示见解析.【解析】

分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【详解】,解不等式,得,解不等式,得,不等式组的解集是.解集在数轴上表示如图:.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.17、(1)见解析;(2)点O到AB的距离为.【解析】

(1)先利用折叠的性质和平行四边形的性质得出DE∥BC,DE=BC,则四边形DBCE是平行四边形,再利用BE=CD即可证明四边形DBCE是矩形;(2)过点O作OF⊥AB,垂足为F,先利用勾股定理求出AB的长度,然后利用面积即可求出OF的长度,则答案可求.【详解】(1)由折叠性质可得:AD=DE,BA=BE,∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,BA=CD,∴DE∥BC,DE=BC,∴四边形DBCE是平行四边形,又∵BE=CD,∴四边形DBCE是矩形.(2)过点O作OF⊥AB,垂足为F,∵BD⊥AD,∴∠ADB=90°,在Rt△ADB中,BD=4,AD=3,由勾股定理得:AB=,又∵四边形ABCD是平行四边形,∴OB=OD=,∴答:点O到AB的距离为.本题主要考查平行四边形的性质,矩形的判定,勾股定理,掌握平行四边形的性质,矩形的判定,勾股定理并能够利用三角形面积进行转化是解题的关键.18、人行通道的宽度为2米.【解析】

设人行通道的宽度为x米,将两块矩形绿地合在一起长为(30﹣3x)m,宽为(24﹣2x)m,根据矩形绿地的面积为480m2,即可列出关于x的一元二次方程,解方程即可得出x的值,经检验后得出x=20不符合题意,此题得解.【详解】解:设人行通道的宽度为x米,将两块矩形绿地合在一起长为(30﹣3x)m,宽为(24﹣2x)m,由已知得:(30﹣3x)•(24﹣2x)=480,整理得:x2﹣22x+40=0,解得:x1=2,x2=20,当x=20时,30﹣3x=﹣30,24﹣2x=﹣16,不符合题意,答:人行通道的宽度为2米.本题考查了一元二次方程的应用,根据数量关系列出关于x的一元二次方程是解题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、乙【解析】

根据方差的意义判断即可.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】∵甲乙的方差分别为1.25,1.21∴成绩比较稳定的是乙故答案为:乙运用了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.20、1【解析】

根据四边形ABCD是矩形,可知因为所以△AOB是等边三角形,由三线合一性质可知的长度【详解】∵四边形ABCD是矩形,∴△AOB是等边三角形,故答案为1.本题主要考查了矩形的性质,等边三角形的性质,熟知矩形的对角线相等且相互平分和等边三角形三线合一的性质是解题关键.21、1【解析】

直接利用二次根式的性质化简得出答案.【详解】解:∵0<a<1,∴,故答案为:1.此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.22、1.【解析】

连接BD,由三角形中位线的性质可得到BD的长,然后依据矩形的性质可得到AC=BD.【详解】如图所示:连接BD.∵E,F分别是AB,AD的中点,EF=5,∴BD=2EF=1.∵ABCD为矩形,∴AC=BD=1.故答案为:1.本题主要考查的是矩形的性质、三角形的中位线定理的应用,求得BD的长是解题的关键.23、0.2.【解析】

首先根据频率=频数÷总数,计算从第一组到第四组的频率之和,再进一步根据一组数据中,各组的频率和是1,进行计算.【详解】解:根据题意得:第一组到第四组的频率之和是,又因为第五组的频率是0.1,所以第六组的频率是.故答案为0.2.本题考查的是频率分布直方图,这类题目主要涉及以下三个计算公式:频率=频数÷样本容量,各组的频率之和为1,各组的频数之和=样本容量.二、解答题(本大题共3个小题,共30分)24、(1)10,1;(2)y=1x﹣1;(3)登山6.5分钟,乙追上了甲,此时乙距A地的高度为135米.【解析】

根据函数图象由甲走的路程除以时间就可以求出甲的速度;根据函数图象可以求出乙在提速前每分离开地面的高度是

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论