2025届广东省江门市新会区梁启超纪念中学数学高一上期末经典模拟试题含解析_第1页
2025届广东省江门市新会区梁启超纪念中学数学高一上期末经典模拟试题含解析_第2页
2025届广东省江门市新会区梁启超纪念中学数学高一上期末经典模拟试题含解析_第3页
2025届广东省江门市新会区梁启超纪念中学数学高一上期末经典模拟试题含解析_第4页
2025届广东省江门市新会区梁启超纪念中学数学高一上期末经典模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届广东省江门市新会区梁启超纪念中学数学高一上期末经典模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的一条对称轴是()A. B.C. D.2.若集合,则()A. B.C. D.3.下列函数中,是幂函数的是()A. B.C. D.4.《掷铁饼者》取材于希腊的现实生活中的体育竞技活动,刻画的是一名强健的男子在掷铁饼过程中最具有表现力的瞬间.现在把郑铁饼者张开的双臂近似看成一张拉满弦的“弓”,郑铁饼者的手臂长约为米,肩宽约为米,“弓”所在圆的半径约为1.25米,则郑铁饼者双手之间的距离约为()A.1.01米 B.1.76米C.2.04米 D.2.94米5.若是圆的弦,的中点是(-1,2),则直线的方程是()A. B.C. D.6.在下列区间中,函数fxA.0,14C.12,7.若-4<x<1,则()A.有最小值1 B.有最大值1C.有最小值-1 D.有最大值-18.设,则的大小关系是()A. B.C. D.9.已知集合,集合,则等于()A. B.C. D.10.集合,,将集合A,B分别用如图中的两个圆表示,则圆中阴影部分表示的集合中元素个数恰好为2的是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若“”为假命题,则实数m最小值为___________.12.在正方体中,则异面直线与的夹角为_________13.若圆锥的侧面展开图是圆心角为的扇形,则该圆锥的侧面积与底面积之比为___________.14.已知圆锥的侧面展开图是一个半径为2的半圆,则这个圆锥的高是_______15.已知集合,,则__________16.如图,、、、分别是三棱柱的顶点或所在棱的中点,则表示直线与是异面直线的图形有______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,有一块半径为4的半圆形钢板,计划裁剪成等腰梯形ABCD的形状,它的下底AB是圆O的直径,上底CD的端点在圆周上,连接OC两点,OC与OB所形成的夹角为.(1)写出这个梯形周长y和的函数解析式,并写出它的定义域;(2)求周长y的最大值以及此时梯形的面积.18.已知函数(1)利用函数单调性的定义证明是单调递增函数;(2)若对任意,恒成立,求实数取值范围19.已知函数,(1)若,解不等式;(2)若函数恰有三个零点,,,求的取值范围20.已知函数(1)判断函数f(x)的单调性,并用定义给出证明;(2)解不等式:;(3)若关于x方程只有一个实根,求实数m的取值范围21.已知函数.(1)当有是实数解时,求实数的取值范围;(2)若,对一切恒成立,求实数的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】由余弦函数的对称轴为,应用整体代入法求得对称轴为,即可判断各项的对称轴方程是否正确.【详解】由余弦函数性质,有,即,∴当时,有.故选:B2、C【解析】根据交集定义即可求出.【详解】因为,所以.故选:C.3、B【解析】根据幂函数的定义辨析即可【详解】根据幂函数的形式可判断B正确,A为一次函数,C为指数函数,D为对数函数故选:B4、B【解析】先由题意求出“弓”所在的弧长所对的圆心角,然后利用三角函数求弦长【详解】由题意得,“弓”所在的弧长为,所以其所对的圆心角的绝对值为,所以两手之间的距离故选:B5、B【解析】由题意知,直线PQ过点A(-1,2),且和直线OA垂直,故其方程为:y﹣2=(x+1),整理得x-2y+5=0故答案为B6、C【解析】利用零点存在定理即可判断.【详解】函数fx=e因为函数y=ex,y=2x-3均为增函数,所以fx又f1=ef12=由零点存在定理可得:fx的零点所在的区间为1故选:C7、D【解析】先将转化为,根据-4<x<1,利用基本不等式求解.【详解】又∵-4<x<1,∴x-1<0∴-(x-1)>0∴.当且仅当x-1=,即x=0时等号成立故选:D【点睛】本题主要考查基本不等式的应用,还考查了转化求解问题的能力,属于基础题.8、B【解析】利用“”分段法确定正确选项.【详解】,,所以.故选:B9、A【解析】根据题意先解出集合B,进而求出交集即可.详解】由题意,,则.故选:A.10、B【解析】首先求出集合,再结合韦恩图及交集、并集、补集的定义计算可得;【详解】解:∵,,∴,则,,选项A中阴影部分表示的集合为,即,故A错误;选项B中阴影部分表示的集合由属于A但不属于B的元素构成,即,故B正确;选项C中阴影部分表示的集合由属于B但不属于A的元素构成,即,有1个元素,故C错误;选项D中阴影部分表示的集合由属于但不属于的元素构成,即,故D错误故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】写出该命题的否定命题,根据否定命题求出的取值范围即可【详解】解:命题“,有”是假命题,它否定命题是“,有”,是真命题,即,恒成立,所以,因为,在上单调递减,上单调递增,又,,所以所以,的最小值为,故答案为:12、【解析】先证明,可得或其补角即为异面直线与所成的角,连接,在中求即可.【详解】在正方体中,,所以,所以四边形是平行四边形,所以,所以或其补角即为异面直线与所成的角,连接,由为正方体可得是等边三角形,所以.故答案为:【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下:(1)平移:平移异面直线中的一条或两条,作出异面直线所成的角;(2)认定:证明作出的角就是所求异面直线所成的角;(3)计算:求该角的值,常利用解三角形;(4)取舍:由异面直线所成的角的取值范围是,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角13、【解析】设圆锥的底面半径为r,母线长为l,根据圆锥的侧面展开图是圆心角为的扇形,有,即,然后分别求得侧面积和底面积即可.【详解】设圆锥的底面半径为r,母线长为l,由题意得:,即,所以其侧面积是,底面积是,所以该圆锥的侧面积与底面积之比为故答案为:14、【解析】设圆锥的母线为,底面半径为则因此圆锥的高是考点:圆锥的侧面展开图15、【解析】因为集合,,所以,故答案为.16、②④【解析】图①中,直线,图②中面,图③中,图④中,面【详解】解:根据题意,在①中,且,则四边形是平行四边形,有,不是异面直线;图②中,、、三点共面,但面,因此直线与异面;在③中,、分别是所在棱的中点,所以且,故,必相交,不是异面直线;图④中,、、共面,但面,与异面所以图②④中与异面故答案为:②④.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),(2)20,【解析】(1)过点C作,表示出,,即可写出梯形周长y和的函数解析式;(2)令,结合二次函数求出y的最大值,求出此时的,再计算梯形面积即可.【小问1详解】由题意得.半圆形钢板半径为4,则,过点C作.在和中,有,,.在中,因为,为等腰三角形,故,所以,.,.【小问2详解】由.令,则,则.则当时,周长y有最大值,最大值20,此时,.故梯形的高,,.18、(1)证明见解析(2)【解析】(1)利用单调性的定义,取值、作差、整理、定号、得结论,即可得证.(2)令,根据x的范围,可得t的范围,原式等价为,,只需即可,分别讨论、和三种情况,根据二次函数的性质,计算求值,分析即可得答案.【小问1详解】由已知可得的定义域为,任取,且,则,因为,,,所以,即,所以在上是单调递增函数【小问2详解】,令,则当时,,所以令,,则只需当,即时,在上单调递增,所以,解得,与矛盾,舍去;当,即时,在上单调递减,在上单调递增,所以,解得;当即时,在上单调递减,所以,解得,与矛盾,舍去综上,实数的取值范围是19、(1)(2)【解析】(1)分当时,当时,讨论去掉绝对值,由一元二次不等式的求解方法可得答案;(2)得出分段函数的解析式,根据二次函数的性质和根与系数的关系可求得答案.【小问1详解】解:当时,原不等式可化为…①(ⅰ)当时,①式化为,解得,所以;(ⅱ)当时,①式化为,解得,所以综上,原不等式的解集为【小问2详解】解:依题意,因为,且二次函数开口向上,所以当时,函数有且仅有一个零点所以时,函数恰有两个零点所以解得不妨设,所以,是方程的两相异实根,则,所以因为是方程的根,且,由求根公式得因为函数在上单调递增,所以,所以.所以.所以a的取值范围是20、(1)f(x)在R上单调递增;证明见解析;(2);(3){-3}(1,+∞).【解析】(1)利用函数单调性的定义及指数函数的性质即得;(2)由题可得,然后利用函数单调性即得;(3)由题可得方程有且只有一个正数根,分m=1,m≠1讨论,利用二次函数的性质可得.【小问1详解】f(x)在R上单调递增;任取x1,x2∈R,且x1<x2,则∵∴,∴即∴函数f(x)在R上单调递增【小问2详解】∵,∵,∴,又∵函数f(x)在R上单调递增,∴,∴不等式的解集为【小问3详解】由可得,,即,此方程有且只有一个实数解令,则t>0,问题转化为:方程有且只有一个正数根①当m=1时,,不合题意,②当m≠1时,(i)若△=0,则m=-3或,若m=-3,则,符合题意;若,则t=-2,不合题意,(ii)若△>0,则m<-3或,由题意,方程有一个正根和一个负根,即,解得m>1综上,实数m的取值范围是{-3}(1,+∞)21、(1);(2)【解析】(1)由题意可知实数的取值范围为函数的值域,结合三角函数的范围和二次函数的性质可知时函数取得最小值,当时函数取得最大值,实数的取值范围是.(2)由题意可得时函数取得最大值,当时函数取得最小值,原问题等价于,求解不等式组可得实数的取值范围是.试题解析:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论