河南省平顶山许昌济源2025届高二数学第一学期期末统考模拟试题含解析_第1页
河南省平顶山许昌济源2025届高二数学第一学期期末统考模拟试题含解析_第2页
河南省平顶山许昌济源2025届高二数学第一学期期末统考模拟试题含解析_第3页
河南省平顶山许昌济源2025届高二数学第一学期期末统考模拟试题含解析_第4页
河南省平顶山许昌济源2025届高二数学第一学期期末统考模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南省平顶山许昌济源2025届高二数学第一学期期末统考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,则的大小关系为()A. B.C. D.2.已知,,,若、、三个向量共面,则实数A3 B.5C.7 D.93.已知数列是公差为等差数列,,则()A.1 B.3C.6 D.94.已知为偶函数,且,则___________.5.若存在,使得不等式成立,则实数k的取值范围为()A. B.C. D.6.过双曲线的左焦点作x轴的垂线交曲线C于点P,为右焦点,若,则双曲线的离心率为()A. B.C. D.7.过双曲线的右焦点有一条弦是左焦点,那么的周长为()A.28 B.C. D.8.函数极小值为()A. B.C. D.9.某种疾病的患病率为0.5%,通过验血诊断该病的误诊率为2%,即非患者中有2%的人验血结果为阳性,患者中有2%的人验血结果为阴性,随机抽取一人进行验血,则其验血结果为阳性的概率为()A.0.0689 B.0.049C.0.0248 D.0.0210.从1,2,3,4,5中任取2个不同的数,两数和为偶数的概率为()A. B.C. D.11.已知,,,,则()A. B.C. D.12.已知函数的图象如图所示,则其导函数的图象大致形状为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知数列满足(),设数列满足:,数列的前项和为,若()恒成立,则的取值范围是________14.如图,抛物线上的点与轴上的点构成等边三角形,,,其中点在抛物线上,点的坐标为,,猜测数列的通项公式为________15.已知点,,其中,若线段的中点坐标为,则直线的方程为________16.已知,,则以AB为直径的圆的方程为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某工厂为了解甲、乙两条生产线所生产产品的质量,分别从甲、乙两条生产线生产的产品中各随机抽取了1000件产品,并对所抽取产品的某一质量指数进行检测,根据检测结果按分组,得到如图所示的频率分布直方图,若该工厂认定产品的质量指数不低于6为优良级产品,产品的质量指数在内时为优等品.(1)用统计有关知识判断甲、乙两条生产线所生产产品的质量哪一条更好,并说明理由(同一组中的数据用该组区间的中点值作代表);(2)用分层抽样的方法从该工厂样品的优等品中抽取6件产品,在这6件产品中随机抽取2件,求抽取到的2件产品都是甲生产线生产的概率.18.(12分)已知数列的前项和为,满足_______请在①;②,;③三个条件中任选一个,补充在上面的横线上,完成上述问题.注:若选择不同的条件分别解答,则按第一个解答计分(1)求数列的通项公式;(2)数列满足,求数列的前项和19.(12分)如图,在四棱锥P—ABCD中,底面ABCD为矩形,平面PAD⊥平面ABCD,PA⏊PD,E,F分别为AD,PB的中点.求证:(1)EF//平面PCD;(2)平面PAB⏊平面PCD20.(12分)已知命题:;:.(1)若“”为真命题,求实数的取值范围;(2)若“”为真命题,求实数的取值范围.21.(12分)已知函数在区间上有最大值和最小值(1)求实数、的值;(2)设,若不等式,在上恒成立,求实数的取值范围22.(10分)已知:方程表示焦点在轴上的椭圆,:方程表示焦点在轴上的双曲线,其中.(1)若“”为真命题,求的取值范围:(2)若“”为假命题,“”为真命题,求的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】构造利用导数判断函数在上单调递减,利用单调性比较大小【详解】设恒成立,函数在上单调递减,.故选:B2、A【解析】由空间向量共面原理得存在实数,,使得,由此能求出实数【详解】解:,,,、、三个向量共面,存在实数,,使得,即有:,解得,,实数故选:【点睛】本题考查空间向量共面原理的应用,属于基础题3、D【解析】结合等差数列的通项公式求得.【详解】设公差,.故选:D4、8【解析】由已知条件中的偶函数即可计算出结果,【详解】为偶函数,且,.故答案为:85、C【解析】根据题意和一元二次不等式能成立可得对于,成立,令,利用导数讨论函数的单调性,即可求出.【详解】存在,不等式成立,则,能成立,即对于,成立,令,,则,令,所以当,单调递增,当,单调递减,又,所以f(x)>-3,所以.故选:C6、D【解析】由题知是等腰直角三角形,,又根据通径的结论知,结合可列出关于的二次齐次式,即可求解离心率.【详解】由题知是等腰直角三角形,且,,又,,即,,,即,解得,,.故选:D.7、C【解析】根据双曲线方程得,,由双曲线的定义,证出,结合即可算出△的周长【详解】双曲线方程为,,根据双曲线的定义,得,,,,相加可得,,,因此△的周长,故选:C8、A【解析】利用导数分析函数的单调性,可求得该函数的极小值.【详解】对函数求导得,令,可得或,列表如下:减极小值增极大值减所以,函数的极小值为.故选:A.9、C【解析】根据全概率公式即可求出【详解】随机抽取一人进行验血,则其验血结果为阳性的概率为0.0248故选:C10、B【解析】利用列举法,结合古典概型概率计算公式,计算出所求概率.【详解】从中任取个不同的数的方法有,共种,其中和为偶数的有共种,所以所求的概率为.故选:B【点睛】本小题主要考查古典概型概率计算,属于基础题.11、D【解析】根据对数函数的性质和幂函数的单调性可得正确的选项.【详解】因为,故,故,又,在上的增函数,故,故,故选:D.12、A【解析】利用f(x)先单调递增的速度由快到慢,再由慢到快,结合导数的几何意义判断即可.【详解】由f(x)的图象可知,函数f(x)先单调递增的速度由快到慢,再由慢到快,由导数的几何意义可知,先减后增,且恒大于0,故符合题意的只有选项A.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先由条件求出的通项公式,得到,由裂项相消法再求出,根据不等式恒成立求出参数的范围即可.【详解】当时,有当时,由①有②由①-②得:所以,当时也成立.所以,故则由,即,所以所以,由所以故答案为:【点睛】本题考查求数列的通项公式,考查裂项相消法求和以及数列不等式问题,属于中档题.14、【解析】求出,,,,,,可猜测,利用累加法,即可求解【详解】的方程为,代入抛物线可得,同理可得,,,,可猜测,证明:记三角形的边长为,由题意可知,当时,在抛物线上,可得,当时,,两式相减得:化简得:,则数列是等差数列,,,,,故答案为:15、【解析】根据中点坐标公式求出,再根据直线的两点式方程即可得出答案.【详解】解:由,,得线段的中点坐标为,所以,解得,所以直线的方程为,即.故答案为:.16、【解析】求圆心及半径即可.【详解】由已知可得圆心坐标为,半径为,所以圆的方程为:.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)甲更好,详细见解析(2)【解析】(1)根据频率分布直方图计算甲、乙两条生产线所生产产品的质量指数的平均数,比较大小即可得答案;(2)由题意可知,甲、乙生产线的样品中优等品件数,利用分层抽样可得从甲生产线的样品中抽取的优等品有件件,记为,从乙生产线的样品中抽取的优等品有件,记为;列出抽取到的2件产品的所有基本事件,根据古典概型计算即可.【小问1详解】解:甲生产线所生产产品的质量指数的平均数为:=3×0.05×2+5×0.15×2+7×0.2×2+9×0.1×2=6.4;乙生产线所生产产品的质量指数的平均数为:=3×0.15×2+5×0.1×2+7×0.2×2+9×0.05×2=5.6因为,所以甲生产线生产产品质量的平均水平高于乙生产线生产产品质量的平均水平,故甲生产线所生产产品的质量更好.【小问2详解】由题意可知,甲生产线的样品中优等品有件,乙生产线的样品中优等品有件,从甲生产线的样品中抽取的优等品有件件,记为,从乙生产线的样品中抽取的优等品有件,记为;从这6件产品中随机抽取2件的情况有:(a,b),(a,c),(a,d),(a,E),(a,F),(b,c),(b,d),(b,E),(b,F),(c,d),(c,E),(c,F),(d,E),(d,F),(E,F),共15种;其中符合条件的情况有:(a,b),(a,c),(a,d),(b,c),(b,d),(c,d),共6种.故抽取到的2件产品都是甲生产线生产的概率为:18、(1)条件选择见解析,;(2).【解析】(1)选①,可得出,由可求得数列的通项公式;选②,分析可知数列是公差为的等差数列,根据已知条件求出的值,利用等差数列的求和公式可求得数列的通项公式;选③,在等式中令可求得的值,即可得出数列的通项公式;(2)求得,利用裂项相消法可求得.【小问1详解】解:选①,因为,则,则,当时,,也满足,所以,对任意的,;选②,因为,则数列是公差为的等差数列,所以,,解得,则;选③,对任意的,,则,可得,因此,.【小问2详解】解:因为,因此,.19、(1)见解析;(2)见解析【解析】(1)取BC中点G,连结EG,FG,推导出,,从而平面平面,由此能得出结论;(2)推导出,从而平面PAD,即得,结合得出平面PCD,由此能证明结论成立.【详解】(1)取BC中点G,连结EG,FG,∵E,F分别是AD,PB的中点,∴,,∴面,面,∵,∴平面平面,∵平面,∴平面.(2)因为底面ABCD为矩形,所以,又因为平面平面ABCD,平面平面,平面ABCD,所以平面PAD因为平面PAD,所以.又因为,,所以平面PCD因为平面PAB,所以平面平面PCD【点睛】本题考查线线垂直、线面平行、面面垂直的证明,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.20、(1);(2).【解析】(1)先分别求出命题为真命题时的取值范围,再由已知“”为真命题进行分类讨论即可求解;(2)由(1)可知,当同时为真时,即可求出的范围.试题解析:若为真,则,所以,则若为真,则,即.(1)若“”为真,则或,则.(2)若“”为真,则且,则.21、(1),;(2).【解析】(1)分析函数在区间上的单调性,结合已知条件可得出关于实数、的方程组,即可解得实数、的值;(2)由(1)可得,利用参变量分离法可得出,利用单调性求出函数在上的最小值,即可得出实数的取值范围.【小问1详解】解:的对称轴是,又,所以,函数在上单调递减,在上单调递增,当时,取最小值,当时,取最大值,即,解得.【小问2详解】解:由(1)知:,所以,,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论