2025届湖北小池滨江高级中学高二数学第一学期期末学业质量监测试题含解析_第1页
2025届湖北小池滨江高级中学高二数学第一学期期末学业质量监测试题含解析_第2页
2025届湖北小池滨江高级中学高二数学第一学期期末学业质量监测试题含解析_第3页
2025届湖北小池滨江高级中学高二数学第一学期期末学业质量监测试题含解析_第4页
2025届湖北小池滨江高级中学高二数学第一学期期末学业质量监测试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届湖北小池滨江高级中学高二数学第一学期期末学业质量监测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.等差数列中,,则前项的和()A. B.C. D.2.若关于x的不等式的解集为,则关于x的不等式的解集是()A. B.,或C.,或 D.,或,或3.已知,是球的球面上两点,,为该球面上的动点,若三棱锥体积的最大值为36,则球的表面积为()A. B.C. D.4.设正实数,满足(其中为正常数),若的最大值为3,则()A.3 B.C. D.5.设双曲线的离心率为,则下列命题中是真命题的为()A.越大,双曲线开口越小 B.越小,双曲线开口越大C.越大,双曲线开口越大 D.越小,双曲线开口越大6.函数的导函数为,若已知图象如图,则下列说法正确的是()A.存在极大值点 B.在单调递增C.一定有最小值 D.不等式一定有解7.某超市收银台排队等候付款的人数及其相应概率如下:排队人数01234概率0.10.16030.30.10.04则至少有两人排队的概率为()A.0.16 B.0.26C.0.56 D.0.748.刘老师在课堂中与学生探究某个圆时,有四位同学分别给出了一个结论.甲:该圆经过点.乙:该圆半径为.丙:该圆的圆心为.丁:该圆经过点,如果只有一位同学的结论是错误的,那么这位同学是()A.甲 B.乙C.丙 D.丁9.如图,将边长为4的正方形折成一个正四棱柱的侧面,则异面直线AK和LM所成角的大小为()A.30° B.45°C.60° D.90°10.已知斜三棱柱所有棱长均为2,,点、满足,,则()A. B.C.2 D.11.在四棱锥中,底面ABCD是正方形,侧棱底面ABCD,,点E是棱PC的中点,作,交PB于F.下面结论正确的个数为()①∥平面EDB;②平面EFD;③直线DE与PA所成角为60°;④点B到平面PAC的距离为.A.1 B.2C.3 D.412.已知椭圆的左、右焦点分别为,,直线过且与椭圆相交于不同的两点,、不在轴上,那么△的周长()A.是定值B.是定值C.不是定值,与直线的倾斜角大小有关D.不是定值,与取值大小有关二、填空题:本题共4小题,每小题5分,共20分。13.螺旋线这个名词来源于希腊文,它的原意是“旋卷”或“缠卷”,平面螺旋便是以一个固定点开始向外逐圈旋绕而形成的曲线,如下图(1)所示.如图(2)所示阴影部分也是一个美丽的螺旋线型的图案,它的画法是这样的:正方形ABCD的边长为4,取正方形ABCD各边的四等分点E,F,G,H,作第2个正方形EFGH,然后再取正方形EFGH各边的四等分点M,N,P,Q,作第3个正方形MNPQ,依此方法一直继续下去,就可以得到阴影部分的图案.如图(2)阴影部分,设直角三角形AEH面积为,直角三角形EMQ面积为,后续各直角三角形面积依次为,…,,若数列的前n项和恒成立,则实数的取值范围为______.14.如图,在平行六面体中,底面是边长为1的正方形,若,且,则的长为_________15.已知O为坐标原点,椭圆T:,过椭圆上一点P的两条直线PA,PB分别与椭圆交于A,B,设PA,PB的中点分别为D,E,直线PA,PB的斜率分别是,,若直线OD,OE的斜率之和为2,则的最大值为_______16.已知数列的前项和.则数列的通项公式为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的离心率为,点是椭圆E上一点.(1)求E的方程;(2)设过点的动直线与椭圆E相交于两点,O为坐标原点,求面积的取值范围.18.(12分)已知直线,抛物线.(1)与有公共点,求的取值范围;(2)是坐标原点,过的焦点且与交于两点,求的面积.19.(12分)已知函数(1)填写函数的相关性质;定义域值域零点极值点单调性性质(2)通过(1)绘制出函数的图像,并讨论方程解的个数20.(12分)如图,三棱柱的所有棱长都是,平面,为的中点,为的中点(1)证明:直线平面;(2)求平面与平面夹角的余弦值21.(12分)已知函数f(x)=ax3+bx2﹣3x在x=﹣1和x=3处取得极值.(1)求a,b的值(2)求f(x)在[﹣4,4]内的最值.22.(10分)等差数列中,,(1)求数列的通项公式;(2)若满足数列为递增数列,求数列前项和

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】利用等差数列下标和性质可求得,根据等差数列求和公式可求得结果.【详解】数列为等差数列,,解得:;.故选:D.2、D【解析】先利用已知一元二次不等式的解集求得参数,再代入所求不等式,利用分式大于零,则分子分母同号,列不等式计算即得结果.【详解】不等式解集为,即的二根是1和2,利用根和系数的关系可知,故不等式即转化成,即,等价于或者,解得或,或者.故解集为,或,或.故选:D.【点睛】分式不等式的解法:(1)先化简成右边为零的形式(或),等价于一元二次不等式(或)再求解即可;(2)先化简成右边为零的形式(或),再利用分子分母同号(或者异号),列不等式组求解即可.3、C【解析】当平面时,三棱锥体积最大,根据棱长与球半径关系即可求出球半径,从而求出表面积.【详解】当平面时,三棱锥体积最大.又,则三棱锥体积,解得;故表面积.故选:C.【点睛】关键点点睛:本题考查三棱锥与球的组合体的综合问题,本题的关键是判断当平面时,三棱锥体积最大.4、D【解析】由于,,为正数,且,所以利用基本不等式可求出结果【详解】解:因为正实数,满足(其中为正常数),所以,则,所以,所以故选:D.5、C【解析】根据双曲线的性质结合离心率对双曲线开口大小的影响即可得解.【详解】解:对于A,越大,双曲线开口越大,故A错误;对于B,越小,双曲线开口越小,故B错误;对于C,由,越大,则越大,双曲线开口越大,故C正确;对于D,越小,则越小,双曲线开口越小,故D错误.故选:C.6、C【解析】根据图象可得的符号,从而可得的单调区间,再对选项进行逐一分析判断正误得出答案.【详解】由所给的图象,可得当时,,当时,,当时,,当时,,可得在递减,递增;在递减,在递增,B错误,且知,所以存在极小值和,无极大值,A错误,同时无论是否存在,可得出一定有最小值,但是最小值不一定为负数,故C正确,D错误.故选:C.7、D【解析】利用互斥事件概率计算公式直接求解【详解】由某超市收银台排队等候付款的人数及其相应概率表,得:至少有两人排队的概率为:故选:D【点睛】本题考查概率的求法、互斥事件概率计算公式,考查运算求解能力,是基础题8、D【解析】分别假设甲、乙、丙、丁是错误的,看能否推出矛盾,进而推导出答案.【详解】假设甲的结论错误,根据丙和丁的结论,该圆的半径为6,与乙的结论矛盾;假设乙的结论错误,圆心到点的距离与圆心到点的距离不相等,不成立;假设丙的结论错误﹐点到点的距离大于,不成立;假设丁的结论错误,圆心到点的距离等于,成立.故选:D9、D【解析】作出折叠后的正四棱锥,确定线面关系,从而把异面直线的夹角通过平移放到一个平面内求得.【详解】由题知,折叠后的正四棱锥如图所示,易知K为的四等分点,L为的中点,M为的四等分点,,取的中点N,易证,则异面直线AK和LM所成角即直线AK和KN所成角,在中,,,故故选:D10、D【解析】以向量为基底向量,则,根据条件由向量的数量积的运算性质,两边平方可得答案.【详解】以向量为基底向量,所以所以故选:D11、D【解析】①由题意连接交于,连接,则是中位线,证出,由线面平行的判定定理知∥平面;②由底面,得,再由证出平面,即得,再由是正方形证出平面,则有,再由条件证出平面;③根据边长证明△DEO是等边三角形即可;④根据等体积法即可求.【详解】①如图所示,连接交于点,连接底面是正方形,点是的中点在中,是中位线,而平面且平面,∥平面;故①正确;②如图所示,底面,且平面,,,是等腰直角三角形,又是斜边的中线,(*),由底面,得,底面是正方形,,又,平面,又平面,(**),由(*)和(**)知平面,而平面,又,且,平面;故②正确;③如图所示,连接AC交BD与O,连接OE,由OE是三角形PAC中位线知OE∥PA,故∠DEO为异面直线PA和DE所成角或其补角,由②可知DE=,OD=,OE=,∴△DEO是等边三角形,∴∠DEO=60°,故③正确;④如图所示,设B到平面PAC的距离为d,由题可知PA=AC=PC=,故,由.故④正确.故正确的有:①②③④,正确的个数为4.故选:D.12、B【解析】由直线过且与椭圆相交于不同的两点,,且,为椭圆两焦点,根据椭圆的定义即可得△的周长为,则答案可求【详解】椭圆,椭圆的长轴长为,∴△的周长为故选:B二、填空题:本题共4小题,每小题5分,共20分。13、或【解析】先求正方形边长的规律,再求三角形面积的规律,从而就可以求和了,再解不等式即可求解.【详解】由题意,由外到内依次各正方形的边长分别为,则,,……,,于是数列是以4为首项,为公比的等比数列,则.由题意可得:,即……,于是.,故解得或.故答案为:或14、【解析】因为,所以,即,故15、【解析】设的坐标,用点差法求和与的关系同,与的关系,然后表示出,求得最大值【详解】设,,,则,两式相减得,∴,,则,同理,,又,∴,,当且仅当,即时等号成立,∴,故答案为:【点睛】方法点睛:本题考查直线与椭圆相交问题,考查椭圆弦中点问题.椭圆中涉及到弦的中点时,常常用点差法确定关系,即设弦端点为,弦中点为,把两点坐标代入椭圆方程,相减后可得16、【解析】根据公式求解即可.【详解】解:当时,当时,因为也适合此等式,所以.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)列出关于a、b、c的方程组即可求解;(2)根据题意,直线l斜率存在,设其方程为,代入椭圆方程消去y得到关于x的二次方程,根据韦达定理得到根与系数的关系,求出PQ长度,求出原点到l的距离,根据三角形面积公式表示出△OPQ的面积,利用基本不等式求解其范围即可.【小问1详解】由题设知,解得.∴椭圆E的方程为;【小问2详解】当轴时不合题意,故可设,则,得.由题意知,即,得.从而.又点O到直线的距离,∴,令,则,,,所求面积的取值范围为.18、(1);(2).【解析】(1)联立直线l与抛物线C的方程消去x,借助判别式建立不等式求解作答.(2)利用(1)中信息求出点纵坐标差的绝对值即可计算作答.【小问1详解】依题意,由消去x并整理得:,因与有公共点,则,解得:,所以的取值范围是.【小问2详解】抛物线的焦点,则,设,由(1)知,,则,因此,,所以的面积.19、(1)详见解析(2)详见解析【解析】(1)利用导数判断函数的性质;(2)由函数性质绘制函数的图象,并将方程转化为,即转化为与的交点个数.【小问1详解】函数的定义域是,,当时,,函数单调递增,当时,,函数单调递减,所以当时,函数取得极大值,同时也是函数的最大值,,当时,,当时,,函数的值域是,,得,所以函数的零点是,定义域值域零点极值点单调性性质单调递增区间,单调递减区间【小问2详解】函数的图象如图,,即,方程解的个数,即与的交点个数,当时,无交点,即方程无实数根;当或时,有一个交点,即方程有一个实数根;当时,有两个交点,即方程有两个实数根.20、(1)证明见解析(2)【解析】(1)取的中点,连接交于,连接,,由平面几何得,再根据线面平行的判定可得证;(2)建立如图所示的空间直角坐标系,利用向量法即可得结果.【小问1详解】取的中点,连接交于,连接,在三棱柱中,为的中点,,为的中点,且,且,四边形为平行四边形,又平面,平面,平面;【小问2详解】平面,,平面,,,两两垂直,以为原点,,,所在直线分别为轴,轴,轴,建立如图所示的空间直角坐标系,则,,,,设平面的法向量为,则即取,则,,又是平面的一个法向量,,故平面和平面夹角的余弦值为21、(1)a,b=﹣1(2)f(x)min=,f(x)max=【解析】(1)先对函数求导,由题意可得=3ax2+2bx﹣3=0的两个根为﹣1和3,结合方程的根与系数关系可求,(2)由(1)可求,然后结合导数可判断函数的单调性,进而可求函数的最值.【详解】解:(1)=3ax2+2bx﹣3,由题意可得=3ax2+2bx﹣3=0的两个根为﹣1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论