版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届河南省周口市项城三高高一上数学期末经典试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知指数函数的图象过点,则()A. B.C.2 D.42.已知,则的取值范围是()A. B.C. D.3.已知函数的零点在区间上,则()A. B.C. D.4.下列函数中,是奇函数且在区间上单调递减的是()A. B.C. D.5.设,,下列图形能表示从集合A到集合B的函数图像的是A. B.C. D.6.下列四组函数中,表示同一函数的一组是()A., B.,C., D.,7.若,,,,则,,的大小关系是A. B.C. D.8.“”是“为锐角”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既非充分又非必要条件9.16、17世纪,随着社会各领域的科学知识迅速发展,庞大的数学计算需求对数学运算提出了更高要求,改进计算方法,提高计算速度和准确度成了当务之急.苏格兰数学家纳皮尔发明了对数,是简化大数运算的有效工具,恩格斯曾把纳皮尔的对数称为十七世纪的三大数学发明之一.已知,,设,则所在的区间为(是自然对数的底数)()A. B.C. D.10.设,则“”是“”()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数在区间是单调递增函数,则实数的取值范围是______12.已知,若,则_______;若,则实数的取值范围是__________13.在直角坐标系内,已知是圆上一点,折叠该圆两次使点分别与圆上不相同的两点(异于点)重合,两次的折痕方程分别为和,若圆上存在点,使,其中的坐标分别为,则实数的取值集合为__________14.已知,,则_________.15.函数的反函数为___________16.已知函数()的部分图象如图所示,则的解析式是___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在直三棱柱ABC﹣A1B1C1中,∠ACB=90°,AC=BC=2,D,E分别为棱AB,BC的中点,M为棱AA1的中点(1)证明:A1B1⊥C1D;(2)若AA1=4,求三棱锥A﹣MDE的体积18.已知集合,集合当时,求及;若,求实数m的取值范围19.已知,.(Ⅰ)求证:函数在上是增函数;(Ⅱ)若,求实数的取值范围.20.如图所示,已知平面平面,平面平面,,求证:平面.21.已知某观光海域AB段的长度为3百公里,一超级快艇在AB段航行,经过多次试验得到其每小时航行费用Q(单位:万元)与速度v(单位:百公里/小时)(0≤v≤3)的以下数据:012300.71.63.3为描述该超级快艇每小时航行费用Q与速度v的关系,现有以下三种函数模型供选择:Q=av3+bv2+cv,Q=0.5v+a,Q=klogav+b(1)试从中确定最符合实际的函数模型,并求出相应的函数解析式;(2)该超级快艇应以多大速度航行才能使AB段的航行费用最少?并求出最少航行费用
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】由指数函数过点代入求出,计算对数值即可.【详解】因为指数函数的图象过点,所以,即,所以,故选:C2、B【解析】根据对数函数的性质即可确定的范围.【详解】由对数及不等式的性质知:,而,所以.故选:B3、C【解析】根据解析式,判断的单调性,结合零点存在定理,即可求得零点所在区间,结合题意,即可求得.【详解】函数的定义域为,且在上单调递增,故其至多一个零点;又,,故的零点在区间,故.故选:4、C【解析】根据函数的单调性和奇偶性对各个选项逐一分析即可.【详解】对A,函数的图象关于轴对称,故是偶函数,故A错误;对B,函数的定义域为不关于原点对称,故是非奇非偶函数,故B错误;对C,函数的图象关于原点对称,故是奇函数,且在上单调递减,故C正确;对D,函数的图象关于原点对称,故是奇函数,但在上单调递增,故D错误.故选:C.5、D【解析】从集合A到集合B的函数,即定义域是A,值域为B,逐项判断即可得出结果.【详解】因为从集合A到集合B的函数,定义域是A,值域为B;所以排除A,C选项,又B中出现一对多的情况,因此B不是函数,排除B.故选D【点睛】本题主要考查函数图像,能从图像分析函数的定义域和值域即可,属于基础题型.6、C【解析】分析每个选项中两个函数的定义域,并化简函数解析式,利用函数相等的概念可得出合适的选项.【详解】对于A选项,函数的定义域为,函数的定义域为,A选项中的两个函数不相等;对于B选项,函数的定义域为,函数的定义域为,B选项中的两个函数不相等;对于C选项,函数、的定义域均为,且,C选项中的两个函数相等;对于D选项,对于函数,有,解得,所以,函数的定义域为,函数的定义域为,D选项中的两个函数不相等.故选:C.7、D【解析】分析:利用指数函数与对数函数及幂函数的行贿可得到,再构造函数,通过分析和的图象与性质,即可得到结论.详解:由题意在上单调递减,所以,在上单调递则,所以,在上单调递则,所以,令,则其为单调递增函数,显然在上一一对应,则,所以,在坐标系中结合和的图象与性质,量曲线分别相交于在和处,可见,在时,小于;在时,大于;在时,小于,所以,所以,即,综上可知,故选D.点睛:本题主要考查了指数式、对数式和幂式的比较大小问题,本题的难点在于的大小比较,通过构造指数函数与一次函数的图象与性质分析解决问题是解答的关键,着重考查了分析问题和解答问题的能力,试题有一定难度,属于中档试题.8、B【解析】根据充分条件与必要条件的定义判断即可.【详解】解:因为为锐角,所以,所以,所以“”是“为锐角”的必要条件;反之,当时,,但是不是锐角,所以“”是“为锐角”的非充分条件.故“”是“为锐角”必要不充分条件.故选:B.【点睛】本题主要考查充分条件与必要条件,与角的余弦在各象限的正负,属于基础题.9、A【解析】根据指数与对数运算法则直接计算.【详解】,所以故选:A.10、A【解析】解不等式,再判断不等式解集的包含关系即可.【详解】由得,由得,故“”是“”的充分不必要条件.故选:A.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】求出二次函数的对称轴,即可得的单增区间,即可求解.【详解】函数的对称轴是,开口向上,若函数在区间单调递增函数,则,故答案为:.12、①.②.【解析】先判断函数的奇偶性,由求解;再根据函数的单调性,由求解.【详解】因为的定义域为R,且,,所以是奇函数,又,则-2;因为在上是增函数,所以在上是增函数,又是R上的奇函数,所以在R上递增,且,所以由,得,即,所以,解得或,所以实数的取值范围是,故答案为:,13、【解析】由题意,∴A(3,2)是⊙C上一点,折叠该圆两次使点A分别与圆上不相同的两点(异于点A)重合,两次的折痕方程分别为x﹣y+1=0和x+y﹣7=0,∴圆上不相同的两点为B(1,4),D(5,4),∵A(3,2),BA⊥DA∴BD的中点为圆心C(3,4),半径为1,∴⊙C的方程为(x﹣3)2+(y﹣4)2=4过P,M,N的圆的方程为x2+y2=m2,∴两圆外切时,m的最大值为,两圆内切时,m的最小值为,故答案为[3,7]14、【解析】利用两角差的正切公式可计算出的值.【详解】由两角差的正切公式得.故答案为:.【点睛】本题考查利用两角差的正切公式求值,解题的关键就是弄清角与角之间的关系,考查计算能力,属于基础题.15、【解析】先求出函数的值域有,再得出,从而求得反函数.【详解】由,可得由,则,所以故答案为:.16、【解析】由图可知,,得,从而,所以,然后将代入,得,又,得,因此,,注意最后确定的值时,一定要代入,而不是,否则会产生增根.考点:三角函数的图象与性质.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】(1)通过证明AB⊥CD,AB⊥CC1,证明A1B1⊥平面CDC1,然后证明A1B1⊥C1D;(2)求出底面△DCE的面积,求出对应的高,即点到底面DCE的距离,然后求解四面体M-CDE的体积,由三棱锥A﹣MDE的体积就是三棱锥M﹣CDE的体积得结论.【详解】(1)证明:∵∠ACB=90°,AC=BC=2,∴AB⊥CD,AB⊥CC1,CD∩CC1=C,∴AB⊥平面CDC1,∵A1B1∥AB,∴A1B1⊥平面CDC1,∵C1D平面CDC1,∴A1B1⊥C1D;(2)解:三棱锥A﹣MDE的体积就是三棱锥M﹣CDE的体积,AC=BC=2,D,E分别为棱AB,BC的中点,M为棱AA1的中点.AA1=4,所以AM=2,AB⊥CD,三棱锥A﹣MDE的体积:【点睛】本题考查线面垂直,考查点到面的距离,解题的关键是利用线面垂直证明线线线垂直,利用等体积法求点到面的距离,是中档题18、(1),或;(2)或.【解析】(1)当时,Q=,由集合的交、并、补运算,即可求解;(2)由集合的包含关系,得Q⊆P,讨论①Q=∅,②Q≠∅,运算可得解【详解】(1)当时,Q=,所以,或.(2)因为P∩Q=Q,所以Q⊆P,①当m-1>3m-2,即时,Q=∅,满足题意,②当m-1≤3m-2,即时,,解得,综合①②可得:实数m的取值范围或.【点睛】本题主要考查了集合的交、并、补运算及集合的包含关系的应用,其中解答中熟记集合的运算的基本方法,以及合理利用集合的包含关系,分类讨论求解是解答的关键,着重考查了分类讨论思想,以及运算与求解能力,属于基础题.19、(Ⅰ)答案见详解;(Ⅱ).【解析】(Ⅰ)利用定义法证明函数单调性;(Ⅱ)判断函数奇偶性,并结合的单调性将不等式转化为不等式组,求出实数的取值范围.【详解】(Ⅰ)任取,则,,即,所以函数在上是增函数;(Ⅱ)因为函数定义域为,关于原点对称,又,所以函数为奇函数,又,即,即,由(Ⅰ)知函数在上是增函数,所以,即,故实数的取值范围为.【点睛】(1)大题中一般采用定义法证明函数单调性;(2)利用单调性解不等式问题,一般需要注意三个方面:①注意函数定义域范围限制;②确定函数的单调性;③部分需要结合奇偶性转化.20、见解析【解析】平面内取一点,作于点,于点,可证出平面,从而,同理可证,故平面.【详解】证明:如图所示,在平面内取一点,作于点,于点.因为平面平面,且交线为,所以平面.因为平面,所以同理可证.又,都在平面内,且,所以平面【点睛】本题主要考查了两个平面垂直的性质,线面垂直的性质,判定,属于中档题.21、(1)选择函数模型,函数解析式为;(2)以1百公里/小时航行时可使AB段的航行费用最少,且最少航行费用为2.1万元.【解析】(1)对题中所给的三个函【解析】对应其性质,结合题中所给的条件,作出正确的选择,之后利用待定系数法求得解析式,得出结果;(2)根据题意,列出函数解析式,之后应用配方法求得最值,得到结果.【详解】(1)若选择函数模型,则该函数在上为单
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 废旧设备处置合同
- 物业环境部培训课件
- 股权合同模板汇编
- 17 难忘的泼水节 公开课一等奖创新教学设计(表格式)
- 古诗三首 公开课一等奖创新教学设计(共两课时)-1
- 支持性心理治疗
- 美术培训班小班课件
- 年产xxx筑养路机械项目可行性研究报告(项目规划)
- 接口垫项目可行性研究报告
- 年产xxx羊毛毛线项目投资分析报告
- 高校实验室安全通识课学习通超星期末考试答案章节答案2024年
- 人民民主专政的本质:人民当家作主课件-2024-2025学年高中政治统编版必修三政治与法治
- 2024中国通信服务股份限公司招聘高频500题难、易错点模拟试题附带答案详解
- 精神科并发症处理
- 医废暂存处管理制度
- 专题17 生于忧患死于安乐(含答案与解析)-备战2024年中考语文之文言文对比阅读(全国版)
- 2024-2030年中国殡葬行业市场运行分析及发展前景研究报告
- 小学科学大象版五年级上册期末练习题(2022秋)(附参考答案)
- 五年级数学北师大版(上册)分数的大小练习七|北师大版(共17张)
- 登泰山记-教学课件
- 电路分析基础(浙江大学)智慧树知到期末考试答案章节答案2024年浙江大学
评论
0/150
提交评论