




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届新疆哈密市第十五中学数学高二上期末教学质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设a,b,c非零实数,且,则()A. B.C. D.2.等比数列的公比,中有连续四项在集合中,则等于()A. B.C D.3.已知直线与圆相交于两点,当的面积最大时,的值是()A. B.C. D.4.若方程表示焦点在y轴上的双曲线,则k的取值范围是()A. B.C. D.5.年1月初,中国多地出现散发病例甚至局部聚集性疫情,在此背景下,各地陆续发出“春节期间非必要不返乡”的倡议,鼓励企事业单位职工就地过年.某市针对非本市户籍并在本市缴纳社保,且春节期间在本市过年的外来务工人员,每人发放1000元疫情专项补贴.小张是该市的一名务工人员,则“他在该市过年”是“他可领取1000元疫情专项补贴”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件6.绕着它的一边旋转一周得到的几何体可能是()A.圆台 B.圆台或两个圆锥的组合体C.圆锥或两个圆锥的组合体 D.圆柱7.已知命题:,命题:则是的()条件A.充分不必要 B.必要不充分C.充分必要 D.既不充分也不必要8.若等比数列的前n项和,则r的值为()A. B.C. D.9.用1,2,3,4这4个数字可写出()个没有重复数字的三位数A.24 B.12C.81 D.6410.在正方体中,E,F分别为AB,CD的中点,则与平面所成的角的正弦值为()A. B.C. D.11.已知是两条不同的直线,是两个不同的平面,则下列结论正确的是()A.若,则 B.若,则C.若,则 D.若,则12.如图,空间四边形OABC中,,,,点M在上,且满足,点N为BC的中点,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设双曲线的焦点为,点为上一点,,则为_____.14.已知数列是公差不为零的等差数列,,,成等比数列,第1,2项与第10,11项的和为68,则数列的通项公式是________.15.已知函数,则f(e)=__.16.二项式的展开式中,项的系数为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知等差数列中,,前5项的和为,数列满足,(1)求数列,的通项公式;(2)记,求数列的前n项和18.(12分)已知抛物线,直线交于、两点,且当时,.(1)求的值;(2)如图,抛物线在、两点处的切线分别与轴交于、,和交于,.证明:存在实数,使得.19.(12分)已知椭圆的左、右焦点分别是,点P是椭圆C上任一点,若面积的最大值为,且离心率(1)求C的方程;(2)A,B为C的左、右顶点,若过点且斜率不为0的直线交C于M,N两点,证明:直线与的交点在一条定直线上20.(12分)已知等差数列的前项和为,满足,.(1)求数列的通项公式与前项和;(2)求的值.21.(12分)解下列不等式:(1);(2).22.(10分)如图所示,在正方体中,点,,分别是,,的中点(1)证明:;(2)求直线与平面所成角的大小
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】对于A、B、D:取特殊值否定结论;对于C:利用作差法证明.【详解】对于A:取符合已知条件,但是不成立.故A错误;对于B:取符合已知条件,但是,所以不成立.故B错误;对于C:因为,所以.故C正确;对于D:取符合已知条件,但是,所以不成立.故D错误;故选:C.2、C【解析】经分析可得,等比数列各项的绝对值单调递增,将五个数按绝对值的大小排列,计算相邻两项的比值,根据等比数列的定义即可求解.【详解】因为等比数列中有连续四项在集合中,所以中既有正数项也有负数项,所以公比,因为,所以,且负数项为相隔两项,所以等比数列各项的绝对值单调递增,按绝对值排列可得,因,,,,所以是中连续四项,所以,故选:C.3、C【解析】利用点到直线的距离公式和弦长公式可以求出的面积是关于的一个式子,即可求出答案.【详解】圆心到直线的距离,弦长为..当,即时,取得最大值.故选:C.4、B【解析】由条件可得,即可得到答案.【详解】方程表示焦点在y轴上的双曲线所以,即故选:B5、B【解析】根据充分条件、必要条件的定义进行判定.【详解】只有非本市户籍并在本市缴纳社保的外来务工人员就地过年,才可领取1000元疫情专项补贴,小张是该市的一名务工人员,但他可能是本市户籍或非本市户籍但在本市未缴纳社保,所以“他在该市过年”是“他可领取1000元疫情专项补贴”的必要不充分条件.故选:B.6、C【解析】讨论是按直角边旋转还是按斜边旋转【详解】按直角边选择可得下图圆锥:如果按直角边旋转可得下图的两个圆锥的组合体:故选:C7、B【解析】利用充分条件和必要条件的定义判断.【详解】解:若,则或,即或,所以是的必要不充分条件故选:B8、B【解析】利用成等比数列来求得.【详解】依题意,等比数列的前n项和,,,所以.故选:B9、A【解析】由题意,从4个数中选出3个数出来全排列即可.【详解】由题意,从4个数中选出3个数出来全排列,共可写出个三位数.故选:A10、B【解析】作出线面角构造三角形直接求解,建立空间直角坐标系用向量法求解.【详解】设正方体棱长为2,、F分别为AB、CD的中点,由正方体性质知平面,所以平面平面,在平面作,则平面,因为,所以即为所求角,所以.故选:B11、C【解析】由空间中直线与直线、直线与平面、平面与平面的位置关系,逐一核对四个选项得答案【详解】解:对于A:若,则或,故A错误;对于B:若,则或与相交,故B错误;对于C:若,根据面面垂直的判定定理可得,故C正确;对于D:若则与平行、相交、或异面,故D错误;故选:C12、B【解析】由空间向量的线性运算求解【详解】由题意,又,,,∴,故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】将方程化为双曲线的标准方程,再利用双曲线的定义进行求解.【详解】将化为,所以,,由双曲线的定义,得:,即,所以或(舍)故答案为:.14、【解析】利用基本量结合已知列方程组求解即可.【详解】设等差数列的公差为由题可知即因为,所以解得:所以.故答案为:15、【解析】由导数得出,再求.【详解】∵,∴,,解得,,,故答案为:.16、80【解析】利用二项式的通项公式进行求解即可.【详解】二项式的通项公式为:,令,所以项的系数为,故答案为:80三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),;(2).【解析】(1)利用等差数列求和公式可得,进而可得,再利用累加法可求,即得;(2)由题可得,然后利用分组求和法即得.【小问1详解】设公差为d,由题设可得,解得,所以;当时,,∴,当时,(满足上述的),所以【小问2详解】∵当时,当时,综上所述:18、(1);(2)证明见解析.【解析】(1)将代入抛物线的方程,列出韦达定理,利用弦长公式可得出关于的等式,即可解得正数的值;(2)将代入,列出韦达定理,求出两切线方程,进而可求得点的坐标,分、两种情况讨论,在时,推导出、、重合,可得出;在时,求出的中点的坐标,利用斜率关系可得出,结合平面向量的线性运算可证得结论成立.【小问1详解】解:将代入得,设、,则,由韦达定理可得,则,解得或(舍),故.【小问2详解】解:将代入中得,设、,则,由韦达定理可得,对求导得,则抛物线在点处的切线方程为,即,①同理抛物线在点处的切线方程为,②联立①②得,所以,所以点的坐标为,当时,即切线与交于轴上一点,此时、、重合,由,则,又,则存在使得成立;当时,切线与轴交于点,切线与轴交于点,由,得的中点,由得,即,又,所以,所以,,又,所以存在实数使得成立.综上,命题成立.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为、;(2)联立直线与圆锥曲线的方程,得到关于(或)的一元二次方程,必要时计算;(3)列出韦达定理;(4)将所求问题或题中的关系转化为、(或、)的形式;(5)代入韦达定理求解.19、(1);(2)证明见解析.【解析】(1)用待定系数法求出椭圆的方程;(2)设直线MN的方程为x=my+1,设,用“设而不求法”表示出.由直线AM的方程为,直线BN的方程为,联立,解得:,即可证明直线AM与BN的交点在直线上.【小问1详解】由题意可得:,解得:,所以C的方程为.【小问2详解】由(1)得A(-2,0),B(2,0),F2(1,0),设直线MN的方程为x=my+1.设,由,消去y得:,所以.所以.因为直线AM的方程为,直线BN的方程为,二者联立,有,所以,解得:,直线AM与BN的交点在直线上.【点睛】(1)待定系数法可以求二次曲线的标准方程;(2)"设而不求"是一种在解析几何中常见的解题方法,可以解决直线与二次曲线相交的问题.20、(1),;(2).【解析】(1)设出等差数列的公差,借助前项和公式列式计算作答.(2)由(1)的结论借助裂项相消去求解作答.【小问1详解】设等差数列的公差为,因,,则,解得,于是得,,所以数列的通项公式为,前项和.【小问2详解】由(1)知,,所以.21、(1)(2)【解析】(1)利用十字相乘解题即可(2)利用分子分母同号为正,异号为负思想,注意讨论分母不为0【小问1详解】由题,即,解得或,即;【小问2详解】由题,解得或,即22、(1)证明见解析(2)【解析】(1)连接,可得,从而可证四边形
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- T/CHES 85-2022针式水位计
- T/CECS 10053-2019绿色建材评价吊顶系统
- T/CCSAS 049.1-2023石油化工企业安全泄放评估技术规范第1部分:泄放评估总则
- T/CCSAS 041-2023化工企业事件管理规范
- T/CCPITCSC 073-2021零售到家运营师职业能力要求
- T/CCMA 0111-2020工业车辆用锂离子电池及其系统
- T/CCMA 0055-2017工程机械液压管路布局规范
- T/CBMCA 017-2021建筑用覆膜钢板
- T/CAQI 250-2022无霜空气源热泵冷热水机组性能要求及试验方法
- T/CAPMA 8-2021土种绵羊洗净毛交易技术指南
- 2025年兵团职工考试试题及答案
- 雨污水管施工方案
- 2025美国急性冠脉综合征(ACS)患者管理指南解读课件
- 人教版语文二年级下册全册课件
- 印刷企业管理制度汇编
- 2026年版广西高等职业教育考试(新职教高考)普高生专用升高职大专《职业适应性测试》模拟试卷(第5套)
- 格力年终总结报告
- 中心城区供热更新改造项目风险分析与管理
- 宁夏新希望贺兰山牧业有限公司良种奶牛繁育基地建设项目环境影响报告书
- 养殖场安全教育培训
- 心源性猝死的预防和急救
评论
0/150
提交评论