版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
张掖市重点中学2025届高一上数学期末教学质量检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列函数在其定义域上既是奇函数又是减函数的是()A. B.C. D.2.如图,四面体ABCD中,CD=4,AB=2,F分别是AC,BD的中点,若EF⊥AB,则EF与CD所成的角的大小是()A.30° B.45°C.60° D.90°3.已知命题p:,,则()A., B.,C., D.,4.设集合,,则集合=()A B.C. D.5.在区间上任取一个数,则函数在上的最大值是3的概率为()A. B.C. D.6.为了得到函数的图象,只需把函数的图象()A.向左平行移动个单位长度 B.向右平行移动个单位长度C.向左平行移动个单位长度 D.向右平行移动个单位长度7.已知为平面,为直线,下列命题正确的是A.,若,则B.,则C.,则D.,则8.若,则等于A. B.C. D.9.郑州地铁1号线的开通运营,极大方便了市民的出行.某时刻从二七广场站驶往博学路站的过程中,10个车站上车的人数统计如下:70,60,60,60,50,40,40,30,30,10.这组数据的平均数,众数,90%分位数的和为()A.125 B.135C.165 D.17010.若是定义在(-∞,+∞)上的偶函数,∈[0,+∞)且(),则()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,若是上的单调递增函数,则的取值范围是__________12.某高中校为了减轻学生过重的课业负担,提高育人质量,在全校所有的1000名高中学生中随机抽取了100名学生,了解他们完成作业所需要的时间(单位:h),将数据按照0.5,1,1,1.5,1.5,2,2,2.5,2.5,3,3,3.5,分成6组,并将所得的数据绘制成频率分布直方图(如图所示).由图中数据可知a=___________;估计全校高中学生中完成作业时间不少于3h的人数为13.已知关于x的不等式的解集为,则的解集为_________14.若角的终边与以原点为圆心的单位圆交于点,则的值为___________.15.已知点是角终边上一点,且,则的值为__________.16.已知函数,若,则实数的取值范围是__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设集合,,.(1)求,;(2)若,求;(3)若,求的取值范围.18.函数f(x)=Asin(2ωx+φ)(A>0,ω>0,|φ|<)的部分图象如图所示(1)求A,ω,φ的值;(2)求图中a,b的值及函数f(x)的递增区间;(3)若α∈[0,π],且f(α)=,求α的值19.已知函数,函数为R上的奇函数,且.(1)求的解析式:(2)判断在区间上的单调性,并用定义给予证明:(3)若的定义域为时,求关于x的不等式的解集.20.已知函数(1)若是偶函数,求a的值;21.若函数定义域为,且存在非零实数,使得对于任意恒成立,称函数满足性质(1)分别判断下列函数是否满足性质并说明理由①②(2)若函数既满足性质,又满足性质,求函数的解析式(3)若函数满足性质,求证:存在,使得
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】对于A:由定义法判断出不是奇函数,即可判断;对于B:判断出在R上为增函数,即可判断;对于C:不能说在定义域是减函数,即可判断;对于D:用图像法判断.【详解】对于A:的定义域为R..所以不是奇函数,故A错误;对于B:在R上为增函数.故B错误;对于C:在为减函数,在为减函数,但不能说在定义域是减函数.故C错误;对于D:,作出图像如图所示:所以既是奇函数又是减函数.故D正确.故选:D2、A【解析】取BC的中点G,连结FG,EG.先证明出(或其补角)即为EF与CD所成的角.在直角三角形△EFG中,利用正弦的定义即可求出的大小.【详解】取BC的中点G,连结FG,EG.由三角形中位线定理可得:AB∥EG,CD∥FG.所以(或其补角)即为EF与CD所成的角.因为EF⊥AB,则EF⊥EG.因为CD=4,AB=2,所以EG=1,FG=2,则△EFG是一个斜边FG=2,一条直角边EG=1的直角三角形,所以,因为为锐角,所以,即EF与CD所成的角为30°.故选:A3、A【解析】直接利用全称命题的否定即可得到结论【详解】因为命题p:,,所以:,.故选:A.4、B【解析】先根据一元二次不等式和对数不等式的求解方法求得集合M、N,再由集合的交集运算可得选项【详解】解:由得,解得或,所以集合,由得,解得,所以集合,所以,故选:B5、A【解析】设函数,求出时的取值范围,再根据讨论的取值范围,判断是否能取得最大值,从而求出对应的概率值【详解】在区间上任取一个数,基本事件空间对应区间的长度是,由,得,∴,∴的最大值是或,即最大值是或;令,得,解得;又,∴;∴当时,,∴在上的最大值是,满足题意;当时,,∴函数在上的最大值是,由,得,的最大值不是;6、A【解析】根据三角函数图象的变换求解即可【详解】由题意,把函数的图象向左平行移动个单位长度得到故选:A7、D【解析】选项直线有可能在平面内;选项需要直线在平面内才成立;选项两条直线可能异面、平行或相交.选项符合面面平行的判定定理,故正确.8、B【解析】,.考点:三角恒等变形、诱导公式、二倍角公式、同角三角函数关系第II卷(非选择题9、D【解析】利用公式可求平均数和90%分位数,再求出众数后可得所求的和.【详解】这组数据的平均数为,而,故90%分位数,众数为,故三者之和为,故选:D.10、B【解析】,有当时函数为减函数是定义在上的偶函数即故选二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】利用函数的单调性求出a的取值范围,再求出的表达式并其范围作答.【详解】因函数是上的单调递增函数,因此有,解得,所以.故答案为:12、①.0.1②.50【解析】利用频率之和为1可求a,由图求出完成作业时间不少于3h的频率,由频数=总数×【详解】由0.5×2a+0.3+0.4+0.5+0.6=1可求a=0.1;由图可知,全校高中学生中完成作业时间不少于3h的频率为0.5×0.1=0.05故答案为:0.1;5013、或【解析】由已知条件知,结合根与系数关系可得,代入化简后求解,即可得出结论.【详解】关于x的不等式的解集为,可得,方程的两根为,∴,所以,代入得,,即,解得或.故答案为:或.【点睛】本题考查一元二次不等式与一元二次方程的关系,以及解一元二次不等式,属于基础题.易错点是忽视对的符号的判断.14、##【解析】直接根据三角函数定义求解即可.【详解】解:因为角的终边与以原点为圆心的单位圆交于点,所以根据三角函数单位圆的定义得故答案为:15、【解析】由三角函数定义可得,进而求解即可【详解】由题,,所以,故答案为:【点睛】本题考查由三角函数值求终边上的点,考查三角函数定义的应用16、【解析】先确定函数单调性,再根据单调性化简不等式,最后解一元二次不等式得结果.【详解】在上单调递增,在上单调递增,且在R上单调递增因此由得故答案为:【点睛】本题考查根据函数单调性解不等式,考查基本分析求解能力,属中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),(2)(3)【解析】(1)先可求出,再利用交集,并集运算求解即可;(2)由(1)得,然后代入,即可求得;(3)由可得到,解不等式组求出的范围即可.【详解】(1)由已知得,所以,;(2)由(1)得,当时,,所以.;(3)因为,所以,解得.【点睛】本题考查集合的交并补的运算,考查集合的包含关系的含义,是基础题.18、(1);(2),递增区间为;(3)或.【解析】(1)利用函数图像可直接得出周期T和A,再利用,求出,然后利用待定系数法直接得出的值(2)通过第一问求得的值可得到的函数解析式,令,再根据a的位置确定出a的值;令得到的函数值即为b的值;利用正弦函数单调增区间即可求出函数的单调增区间(3)令结合即可求得的取值【详解】解:(1)由图象知A=2,=-(-)=,得T=π,即=2,得ω=1,又f(-)=2sin[2×(-)+φ]=-2,得sin(-+φ)=-1,即-+φ=-+2kπ,即ω=+2kπ,k∈Z,∵|φ|<,∴当k=0时,φ=,即A=2,ω=1,φ=;(2)a=--=--=-,b=f(0)=2sin=2×=1,∵f(x)=2sin(2x+),∴由2kπ-≤2x+≤2kπ+,k∈Z,得kπ-≤x≤kπ+,k∈Z,即函数f(x)的递增区间为[kπ-,kπ+],k∈Z;(3)∵f(α)=2sin(2α+)=,即sin(2α+)=,∵α∈[0,π],∴2α+∈[,],∴2α+=或,∴α=或α=【点睛】关于三角函数图像需记住:两对称轴之间的距离为半个周期;相邻对称轴心之间的距离为半个周期;相邻对称轴和对称中心之间的距离为个周期关于正弦函数单调区间要掌握:当时,函数单调递增;当时,函数单调递减19、(1);(2)单调递增.证明见解析;(3)【解析】(1)列方程组解得参数a、b,即可求得的解析式;(2)以函数单调性定义去证明即可;(3)依据奇函数在上单调递增,把不等式转化为整式不等式即可解决.【小问1详解】由题意可知,即,解之得,则,经检验,符合题意.【小问2详解】在区间上单调递增.设任意,且,则由,且,可得则,即故在区间上单调递增.【小问3详解】不等式可化为等价于,解之得故不等式的解集为20、(1)0(2)【解析】(1)由偶函数的定义得出a的值;(2)由分离参数得,利用换元法得出的最小值,即可得出a的取值范围【小问1详解】因为是偶函数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 合同履行监管协调跟踪律师函服务
- 果树苗批发购销合同
- 合作伙伴股权协议
- 2024劳动合同的试用期最长
- 建筑施工中的夜间施工与照明安全考核试卷
- 地产营销托管合同范例
- 汽油仓储合同模板
- 牛蛙养殖开售合同范例
- 灯具外包合同范例
- 审计物业合同范例
- 2024中小学生国防教育与爱国主义情操培养合同
- 电力工程施工售后保障方案
- 中国心力衰竭诊断和治疗指南2024解读(完整版)
- 【百强校联考】【黑吉辽卷】东北三省三校2025届高三11月期中联考(11.7-11.8)语文试卷+答案
- 养老护理员考试练习模拟理论知识题库
- 2023年国家电网有限公司招聘考试真题
- 2024至2030年中国美式家具行业投资前景及策略咨询研究报告
- 俯卧位心肺复苏
- 氢气中卤化物、甲酸的测定 离子色谱法-编制说明
- 2024年经济师考试-中级经济师考试近5年真题集锦(频考类试题)带答案
- 艺术哲学:美是如何诞生的学习通超星期末考试答案章节答案2024年
评论
0/150
提交评论