山东省青岛市市南区统考2023-2024学年中考数学对点突破模拟试卷含解析_第1页
山东省青岛市市南区统考2023-2024学年中考数学对点突破模拟试卷含解析_第2页
山东省青岛市市南区统考2023-2024学年中考数学对点突破模拟试卷含解析_第3页
山东省青岛市市南区统考2023-2024学年中考数学对点突破模拟试卷含解析_第4页
山东省青岛市市南区统考2023-2024学年中考数学对点突破模拟试卷含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省青岛市市南区统考2023-2024学年中考数学对点突破模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.下列四个图形分别是四届国际数学家大会的会标,其中属于中心对称图形的有()A.1个 B.2个 C.3个 D.4个2.在实数,,,中,其中最小的实数是()A. B. C. D.3.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=40°,则∠2的度数为()A.50° B.40° C.30° D.25°4.九年级学生去距学校10km的博物馆参观,一部分学生骑自行车先走,过了20min后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.设骑车学生的速度为xkm/h,则所列方程正确的是()A. B.C. D.5.小亮家1月至10月的用电量统计如图所示,这组数据的众数和中位数分别是()A.30和20B.30和25C.30和22.5D.30和17.56.如图,函数y1=x3与y2=在同一坐标系中的图象如图所示,则当y1<y2时()A.﹣1<x<l B.0<x<1或x<﹣1C.﹣1<x<I且x≠0 D.﹣1<x<0或x>17.下列图标中,是中心对称图形的是()A. B.C. D.8.下列运算正确的是()A.a2•a4=a8 B.2a2+a2=3a4 C.a6÷a2=a3 D.(ab2)3=a3b69.二次函数y=3(x﹣1)2+2,下列说法正确的是()A.图象的开口向下B.图象的顶点坐标是(1,2)C.当x>1时,y随x的增大而减小D.图象与y轴的交点坐标为(0,2)10.一次函数y=ax+b与反比例函数,其中ab<0,a、b为常数,它们在同一坐标系中的图象可以是()A. B. C. D.二、填空题(共7小题,每小题3分,满分21分)11.如图,菱形OABC的一边OA在x轴的负半轴上,O是坐标原点,tan∠AOC=,反比例函数y=的图象经过点C,与AB交于点D,若△COD的面积为20,则k的值等于_____________.12.若a2﹣2a﹣4=0,则5+4a﹣2a2=_____.13.计算的结果等于_____________.14.在一次射击比赛中,某运动员前7次射击共中62环,如果他要打破89环(10次射击)的记录,那么第8次射击他至少要打出_____环的成绩.15.如图,在矩形ABCD中,AD=2,CD=1,连接AC,以对角线AC为边,按逆时针方向作矩形ABCD的相似矩形AB1C1C,再连接AC1,以对角线AC1为边作矩形AB1C1C的相似矩形AB2C2C1,…,按此规律继续下去,则矩形ABnCnCn-1的面积为________________.16.如图,矩形ABCD的对角线BD经过的坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数y=的图象上,若点A的坐标为(﹣2,﹣3),则k的值为_____.17.因式分解:16a3﹣4a=_____.三、解答题(共7小题,满分69分)18.(10分)如图,已知点E,F分别是▱ABCD的对角线BD所在直线上的两点,BF=DE,连接AE,CF,求证:CF=AE,CF∥AE.19.(5分)已知,如图,在四边形ABCD中,∠ADB=∠ACB,延长AD、BC相交于点E.求证:△ACE∽△BDE;BE•DC=AB•DE.20.(8分)在一次数学活动课上,老师让同学们到操场上测量旗杆的高度,然后回来交流各自的测量方法.小芳的测量方法是:拿一根高3.5米的竹竿直立在离旗杆27米的C处(如图),然后沿BC方向走到D处,这时目测旗杆顶部A与竹竿顶部E恰好在同一直线上,又测得C、D两点的距离为3米,小芳的目高为1.5米,这样便可知道旗杆的高.你认为这种测量方法是否可行?请说明理由.21.(10分)在数学实践活动课上,老师带领同学们到附近的湿地公园测量园内雕塑的高度.用测角仪在A处测得雕塑顶端点C′的仰角为30°,再往雕塑方向前进4米至B处,测得仰角为45°.问:该雕塑有多高?(测角仪高度忽略不计,结果不取近似值.)22.(10分)如图,在梯形ABCD中,AD∥BC,对角线AC、BD交于点M,点E在边BC上,且∠DAE=∠DCB,联结AE,AE与BD交于点F.(1)求证:;(2)连接DE,如果BF=3FM,求证:四边形ABED是平行四边形.23.(12分)(2016山东省烟台市)由于雾霾天气频发,市场上防护口罩出现热销,某医药公司每月固定生产甲、乙两种型号的防雾霾口罩共20万只,且所有产品当月全部售出,原料成本、销售单价及工人生产提成如表:(1)若该公司五月份的销售收入为300万元,求甲、乙两种型号的产品分别是多少万只?(2)公司实行计件工资制,即工人每生产一只口罩获得一定金额的提成,如果公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元,应怎样安排甲、乙两种型号的产量,可使该月公司所获利润最大?并求出最大利润(利润=销售收入﹣投入总成本)24.(14分)如图,AC=DC,BC=EC,∠ACD=∠BCE.求证:∠A=∠D.

参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】

解:根据中心对称的概念可得第一个图形是中心对称图形,第二个图形不是中心对称图形,第三个图形是中心对称图形,第四个图形不是中心对称图形,所以,中心对称图有2个.故选B.【点睛】本题考查中心对称图形的识别,掌握中心对称图形的概念是本题的解题关键.2、B【解析】

由正数大于一切负数,负数小于0,正数大于0,两个负数绝对值大的反而小,把这四个数从小到大排列,即可求解.【详解】解:∵0,-2,1,中,-2<0<1<,

∴其中最小的实数为-2;

故选:B.【点睛】本题考查了实数的大小比较,关键是掌握:正数大于0,负数小于0,正数大于一切负数,两个负数绝对值大的反而小.3、A【解析】

由两直线平行,同位角相等,可求得∠3的度数,然后求得∠2的度数.【详解】如图,∵∠1=40°,∴∠3=∠1=40°,∴∠2=90°-40°=50°.故选A.【点睛】此题考查了平行线的性质.利用两直线平行,同位角相等是解此题的关键.4、C【解析】试题分析:设骑车学生的速度为xkm/h,则汽车的速度为2xkm/h,由题意得,.故选C.考点:由实际问题抽象出分式方程.5、C【解析】

将折线统计图中的数据从小到大重新排列后,根据中位数和众数的定义求解可得.【详解】将这10个数据从小到大重新排列为:10、15、15、20、20、25、25、30、30、30,所以该组数据的众数为30、中位数为20+252故选:C.【点睛】此题考查了众数与中位数,众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.6、B【解析】

根据图象知,两个函数的图象的交点是(1,1),(-1,-1).由图象可以直接写出当y1<y2时所对应的x的取值范围.【详解】根据图象知,一次函数y1=x3与反比例函数y2=的交点是(1,1),(-1,−1),∴当y1<y2时,,0<x<1或x<-1;故答案选:B.【点睛】本题考查了反比例函数与幂函数,解题的关键是熟练的掌握反比例函数与幂函数的图象根据图象找出答案.7、B【解析】

根据中心对称图形的概念对各选项分析判断即可得解.【详解】解:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.故选B.【点睛】本题考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.8、D【解析】根据同底数幂的乘法,合并同类项,同底数幂的除法,幂的乘方与积的乘方运算法则逐一计算作出判断:A、a2•a4=a6,故此选项错误;B、2a2+a2=3a2,故此选项错误;C、a6÷a2=a4,故此选项错误;D、(ab2)3=a3b6,故此选项正确..故选D.考点:同底数幂的乘法,合并同类项,同底数幂的除法,幂的乘方与积的乘方.9、B【解析】

由抛物线解析式可求得其开口方向、顶点坐标、最值及增减性,则可判断四个选项,可求得答案.【详解】解:A、因为a=3>0,所以开口向上,错误;B、顶点坐标是(1,2),正确;C、当x>1时,y随x增大而增大,错误;D、图象与y轴的交点坐标为(0,5),错误;故选:B.【点睛】考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x﹣h)2+k中,对称轴为x=h,顶点坐标为(h,k).10、C【解析】

根据一次函数的位置确定a、b的大小,看是否符合ab<0,计算a-b确定符号,确定双曲线的位置.【详解】A.由一次函数图象过一、三象限,得a>0,交y轴负半轴,则b<0,满足ab<0,∴a−b>0,∴反比例函数y=的图象过一、三象限,所以此选项不正确;B.由一次函数图象过二、四象限,得a<0,交y轴正半轴,则b>0,满足ab<0,∴a−b<0,∴反比例函数y=的图象过二、四象限,所以此选项不正确;C.由一次函数图象过一、三象限,得a>0,交y轴负半轴,则b<0,满足ab<0,∴a−b>0,∴反比例函数y=的图象过一、三象限,所以此选项正确;D.由一次函数图象过二、四象限,得a<0,交y轴负半轴,则b<0,满足ab>0,与已知相矛盾所以此选项不正确;故选C.【点睛】此题考查反比例函数的图象,一次函数的图象,解题关键在于确定a、b的大小二、填空题(共7小题,每小题3分,满分21分)11、﹣24【解析】分析:如下图,过点C作CF⊥AO于点F,过点D作DE∥OA交CO于点E,设CF=4x,由tan∠AOC=可得OF=3x,由此可得OC=5x,从而可得OA=5x,由已知条件易证S菱形ABCO=2S△COD=40=OA·CF=20x2,从而可得x=,由此可得点C的坐标为,这样由点C在反比例函数的图象上即可得到k=-24.详解:如下图,过点C作CF⊥AO于点F,过点D作DE∥OA交CO于点E,设CF=4x,∵四边形ABCO是菱形,∴AB∥CO,AO∥BC,∵DE∥AO,∴四边形AOED和四边形DECB都是平行四边形,∴S△AOD=S△DOE,S△BCD=S△CDE,∴S菱形ABCD=2S△DOE+2S△CDE=2S△COD=40,∵tan∠AOC=,CF=4x,∴OF=3x,∴在Rt△COF中,由勾股定理可得OC=5x,∴OA==OC=5x,∴S菱形ABCO=AO·CF=5x·4x=20x2=40,解得:x=,∴OF=,CF=,∴点C的坐标为,∵点C在反比例函数的图象上,∴k=.故答案为:-24.点睛:本题的解题要点有两点:(1)作出如图所示的辅助线,设CF=4x,结合已知条件把OF和OA用含x的式子表达出来;(2)由四边形AOCB是菱形,点D在AB上,S△COD=20得到S菱形ABCO=2S△COD=40.12、-3【解析】试题解析:∵即∴原式故答案为13、a3【解析】试题解析:x5÷x2=x3.考点:同底数幂的除法.14、8【解析】为了使第8次的环数最少,可使后面的2次射击都达到最高环数,即10环.设第8次射击环数为x环,根据题意列出一元一次不等式62+x+2×10>89解之,得x>7x表示环数,故x为正整数且x>7,则x的最小值为8即第8次至少应打8环.点睛:本题考查的是一元一次不等式的应用.解决此类问题的关键是在理解题意的基础上,建立与之相应的解决问题的“数学模型”——不等式,再由不等式的相关知识确定问题的答案.15、或【解析】试题分析:AC===,因为矩形都相似,且每相邻两个矩形的相似比=,∴=2×1=2,=,===,...,==...===.故答案为.考点:1.相似多边形的性质;2.勾股定理;3.规律型;4.矩形的性质;5.综合题.16、1或﹣1【解析】

根据矩形的对角线将矩形分成面积相等的两个直角三角形,找到图中的所有矩形及相等的三角形,即可推出S四边形CEOF=S四边形HAGO,根据反比例函数比例系数的几何意义即可求出k2+4k+1=6,再解出k的值即可.【详解】如图:∵四边形ABCD、HBEO、OECF、GOFD为矩形,又∵BO为四边形HBEO的对角线,OD为四边形OGDF的对角线,∴S△BEO=S△BHO,S△OFD=S△OGD,S△CBD=S△ADB,∴S△CBD﹣S△BEO﹣S△OFD=S△ADB﹣S△BHO﹣S△OGD,∴S四边形CEOF=S四边形HAGO=2×3=6,∴xy=k2+4k+1=6,解得k=1或k=﹣1.故答案为1或﹣1.【点睛】本题考查了反比例函数k的几何意义、矩形的性质、一元二次方程的解法,解题的关键是判断出S四边形CEOF=S四边形HAGO.17、4a(2a+1)(2a﹣1)【解析】

首先提取公因式,再利用平方差公式分解即可.【详解】原式=4a(4a2﹣1)=4a(2a+1)(2a﹣1),故答案为4a(2a+1)(2a﹣1)【点睛】本题考查了提公因式法与公式法的综合运用,解题的关键是熟练掌握因式分解的方法.三、解答题(共7小题,满分69分)18、证明见解析【解析】

根据平行四边形性质推出AB=CD,AB∥CD,得出∠EBA=∠FDC,根据SAS证两三角形全等即可解决问题.【详解】解:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠EBA=∠FDC,∵DE=BF,∴BE=DF,∵在△ABE和△CDF中,∴△ABE≌△CDF(SAS),∴AE=CF,∠E=∠F,∴AE∥CF.【点睛】本题考查了平行四边形的性质和全等三角形的判定的应用,解题的关键是准确寻找全等三角形解决问题.19、(1)答案见解析;(2)答案见解析.【解析】

(1)根据邻补角的定义得到∠BDE=∠ACE,即可得到结论;(2)根据相似三角形的性质得到,由于∠E=∠E,得到△ECD∽△EAB,由相似三角形的性质得到,等量代换得到,即可得到结论.本题解析:【详解】证明:(1)∵∠ADB=∠ACB,∴∠BDE=∠ACE,又∵∠E=∠E,∴△ACE∽△BDE;(2)∵△ACE∽△BDE∴,∵∠E=∠E,∴△ECD∽△EAB,∴,∴BE•DC=AB•DE.【点睛】本题考查相似三角形的判定与性质,熟练掌握判定定理是关键.20、这种测量方法可行,旗杆的高为21.1米.【解析】分析:根据已知得出过F作FG⊥AB于G,交CE于H,利用相似三角形的判定得出△AGF∽△EHF,再利用相似三角形的性质得出即可.详解:这种测量方法可行.理由如下:设旗杆高AB=x.过F作FG⊥AB于G,交CE于H(如图).所以△AGF∽△EHF.因为FD=1.1,GF=27+3=30,HF=3,所以EH=3.1﹣1.1=2,AG=x﹣1.1.由△AGF∽△EHF,得,即,所以x﹣1.1=20,解得x=21.1(米)答:旗杆的高为21.1米.点睛:此题主要考查了相似三角形的判定与性质,根据已知得出△AGF∽△EHF是解题关键.21、该雕塑的高度为(2+2)米.【解析】

过点C作CD⊥AB,设CD=x,由∠CBD=45°知BD=CD=x米,根据tanA=列出关于x的方程,解之可得.【详解】解:如图,过点C作CD⊥AB,交AB延长线于点D,设CD=x米,∵∠CBD=45°,∠BDC=90°,∴BD=CD=x米,∵∠A=30°,AD=AB+BD=4+x,∴tanA=,即,解得:x=2+2,答:该雕塑的高度为(2+2)米.【点睛】本题主要考查解直角三角形的应用-仰角俯角问题,解题的关键是根据题意构建直角三角形,并熟练掌握三角函数的应用.22、(1)证明见解析;(2)证明见解析.【解析】分析:(1)由AD∥BC可得出∠DAE=∠AEB,结合∠DCB=∠DAE可得出∠DCB=∠AEB,进而可得出AE∥DC、△AMF∽△CMD,根据相似三角形的性质可得出=,根据AD∥BC,可得出△AMD∽△CMB,根据相似三角形的性质可得出=,进而可得出=,即MD2=MF•MB;(2)设FM=a,则BF=3a,BM=4a.由(1)的结论可求出MD的长度,代入DF=DM+MF可得出DF的长度,由AD∥BC,可得出△AFD∽△△EFB,根据相似三角形的性质可得出AF=EF,利用“对角线互相平分的四边形是平行四边形”即可证出四边形ABED是平行四边形.详解:(1)∵AD∥BC,∴∠DAE=∠AEB.∵∠DCB=∠DAE,∴∠DCB=∠AEB,∴AE∥DC,∴△AMF∽△CMD,∴=.∵AD∥BC,∴△AMD∽△CMB,∴==,即MD2=MF•MB.(2)设FM=a,则BF=3a,BM=4a.由MD2=MF•MB,得:MD2=a•4a,∴MD=2a,∴DF=BF=3a.∵AD∥BC,∴△AFD∽△△EFB,∴==1,∴AF=EF,∴四边形ABED是平行四边形.点睛:本题考查了相似三角形的判定与性质、平行四边形的判定

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论