湖北省武汉市新洲区2025届数学九年级第一学期开学达标测试试题【含答案】_第1页
湖北省武汉市新洲区2025届数学九年级第一学期开学达标测试试题【含答案】_第2页
湖北省武汉市新洲区2025届数学九年级第一学期开学达标测试试题【含答案】_第3页
湖北省武汉市新洲区2025届数学九年级第一学期开学达标测试试题【含答案】_第4页
湖北省武汉市新洲区2025届数学九年级第一学期开学达标测试试题【含答案】_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共7页湖北省武汉市新洲区2025届数学九年级第一学期开学达标测试试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)下列式子没有意义的是()A. B. C. D.2、(4分)如图,在R△ABC中,∠C=90°,∠A=30°,BC=4cm,则AB等于()A.9cm B.8cm C.7cm D.6cm3、(4分)若x<y,则下列式子不成立的是()A.x-1<y-1 B. C.x+3<y+3 D.-2x<-2y4、(4分)如图,已知一次函数y=ax+b的图象为直线,则关于x的方程ax+b=1的解x的值为()A.1 B.4 C.2 D.-0.55、(4分)在四边形ABCD中,两对角线交于点O,若OA=OB=OC=OD,则这个四边形()A.可能不是平行四边形 B.一定是菱形C.一定是正方形 D.一定是矩形6、(4分)在数学活动课上,同学们判断一个四边形门框是否为矩形.下面是某学习小组4位同学拟定的方案,其中正确的是()A.测量对角线是否平分 B.测量两组对边是否分别相等C.测量其中三个角是否是直角 D.测量对角线是否相等7、(4分)如图,已知反比例函数和一次函数的图象相交于点、两点,则不等式的解集为()A.或 B.C. D.或8、(4分)如图,矩形ABCD的长和宽分别为6和4,E、F、G、H依次是矩形ABCD各边的中点,则四边形EFGH的周长等于()A.20 B.10 C.4 D.2二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)直线y=2x+3与x轴相交于点A,则点A的坐标为_____.10、(4分)函数y=中,自变量x的取值范围是_____.11、(4分)甲、乙两支足球队,每支球队队员身高数据的平均数都是1.70米,方差分别为S甲2=0.29,S乙2=0.35,其身高较整齐的是球队.12、(4分)已知一组数据0,1,2,2,x,3的平均数是2,则这组数据的方差是_____.13、(4分)当1<a<2时,代数式的值为______.三、解答题(本大题共5个小题,共48分)14、(12分)为表彰在某活动中表现积极的同学,老师决定购买文具盒与钢笔作为奖品.已知5个文具盒、2支钢笔共需100元;3个文具盒、1支钢笔共需57元.(1)每个文具盒、每支钢笔各多少元?(2)若本次表彰活动,老师决定购买10件作为奖品,若购买个文具盒,10件奖品共需元,求与的函数关系式.如果至少需要购买3个文具盒,本次活动老师最多需要花多少钱?15、(8分)如图,点是等边内一点,,,将绕点顺时针方向旋转得到,连接,.(1)当时,判断的形状,并说明理由;(2)求的度数;(3)请你探究:当为多少度时,是等腰三角形?16、(8分)如图①,在四边形中,,,,,点从点开始沿边向终点以每秒的速度移动,点从点开始沿边向终点以每秒的速度移动,当其中一点到达终点时运动停止,设运动时间为秒.(1)求证:当时,四边形是平行四边形;(2)当为何值时,线段平分对角线?并求出此时四边形的周长;(3)当为何值时,点恰好在的垂直平分线上?17、(10分)某科技公司研发出一款多型号的智能手表,一家代理商出售该公司的A型智能手表,去年销售总额为8000元,今年A型智能手表的售价每只比去年降了60元,若售出的数量与去年相同,销售总额将比去年减少25%.(1)请问今年A型智能手表每只售价多少元?(2)今年这家代理商准备新进一批A型智能手表和B型智能手表共100只,它们的进货价与销售价格如下表,若B型智能手表进货量不超过A型智能手表数量的3倍,所进智能手表可全部售完,请你设计出进货方案,使这批智能手表获利最多,并求出最大利润是多少元?

A型智能手表

B型智能手表

进价

130元/只

150元/只

售价

今年的售价

230元/只

18、(10分)计算和解方程.(1);(2)解方程:.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,二次函数的图象过点A(3,0),对称轴为直线,给出以下结论:①;②;③;④若M(-3,)、N(6,)为函数图象上的两点,则,其中正确的是____________.(只要填序号)20、(4分)在▱ABCD中,对角线AC和BD交于点O,AB=2,AC=6,BD=8,那么△COD的周长为_____.21、(4分)已知直线与直线平行,那么_______.22、(4分)如图,四边形ABCD沿直线AC对折后重合,如果AC,BD交于O,AB∥CD,则结论①AB=CD,②AD∥BC,③AC⊥BD,④AO=CO,⑤AB⊥BC,其中正确的结论是___(填序号).23、(4分)在平面直角坐标系中,已知点A(﹣,0),B(,0),点C在x轴上,且AC+BC=6,写出满足条件的所有点C的坐标_____.二、解答题(本大题共3个小题,共30分)24、(8分)(1)先化简,再求值:,其中(2)解方程:25、(10分)如图所示,已知:Rt△ABC中,∠ACB=90°.作∠BAC的平分线AM交BC于点D,在所作图形中,将Rt△ABC沿某条直线折叠,使点A与点D重合,折痕EF交AC于点E,交AB于点F,连接DE、DF,再展回到原图形,得到四边形AEDF.(1)试判断四边形AEDF的形状,并证明;(2)若AB=10,BC=8,在折痕EF上有一动点P,求PC+PD的最小值.26、(12分)移动营业厅推出两种移动电话计费方式:方案一,月租费用15元/元,本地通话费用0.2元/分钟,方案二,月租费用0元/元,本地通话费用0.3元/分钟.(1)以x表示每个月的通话时间(单位:分钟),y表示每个月的电话费用(单位:元),分别表示出两种电话计费方式的函数表达式;(2)问当每个月的通话时间为300分钟时,采用那种电话计费方式比较合算?

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、A【解析】试题分析:A.没有意义,故A符合题意;B.有意义,故B不符合题意;C.有意义,故C不符合题意;D.有意义,故D不符合题意;故选A.考点:二次根式有意义的条件.2、B【解析】

根据含30度角的直角三角形的性质即可求出答案.【详解】直角三角形中,30°所对的边的长度是斜边的一半,所以AB=2BC=8cm.故选B.本题考查含30度角的直角三角形,解题的关键是熟练运用30度角的直角三角形的性质,本题属于基础题型.3、D【解析】

根据不等式的性质逐项分析即可.【详解】A.∵x<y,∴x-1<y-1,故成立;B.∵x<y,∴,故成立;C.∵x<y,∴x+3<y+3,故成立;D.∵x<y,∴-2x>-2y,故不成立;故选D.故选:D.本题考查了不等式的性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;②不等式两边都乘(或除以)同一个正数,不等号的方向不变;③不等式两边都乘(或除以)同一个负数,不等号的方向改变.4、B【解析】

根据一次函数图象可得一次函数y=ax+b的图象经过(4,1)点,进而得到方程的解.【详解】根据图象可得,一次函数y=ax+b的图象经过(4,1)点,因此关于x的方程ax+b=1的解x=4,故选B.本题考查了一次函数与方程,关键是正确利用数形结合的方法从图象中找到正确答案.5、D【解析】

根据OA=OC,OB=OD,判断四边形ABCD是平行四边形.然后根据AC=BD,判定四边形ABCD是矩形.【详解】解:这个四边形是矩形,理由如下:

∵对角线AC、BD交于点O,OA=OC,OB=OD,

∴四边形ABCD是平行四边形,

又∵OA=OC=OD=OB,

∴AC=BD,

∴四边形ABCD是矩形.

故选D.本题考查了矩形的判断,熟记矩形的各种判定方法是解题的关键.6、C【解析】分析:根据矩形的判定方法逐项分析即可.详解:A、根据对角线互相平分只能得出四边形是平行四边形,故本选项错误;B、根据对边分别相等,只能得出四边形是平行四边形,故本选项错误;C、根据矩形的判定,可得出此时四边形是矩形,故本选项正确;D、根据对角线相等不能得出四边形是矩形,故本选项错误;故选C.点睛:本题考查了矩形的判定方法的实际应用,熟练掌握矩形的判定方法是解答本题的关键.矩形的判定方法有:①有一个角的直角的平行四边形是矩形;②对角线相等的平行四边形是矩形;③有三个角是直角的四边形是矩形;④对角线相等且互相平分的四边形是矩形.7、D【解析】

分析两个函数以交点为界,观察交点每一侧的图像可以得到结论.【详解】解:观察图像得:的解集是:或.故选D.本题考查的是利用图像直接写不等式的解集问题,理解图像反映出来的函数值的变化对应的自变量的变化是解题关键.8、C【解析】

根据矩形ABCD中,E、F、G、H分别是AD、AB、BC、CD的中点,利用三角形中位线定理求证EF=GH=FG=EH,然后利用四条边都相等的平行四边形是菱形.根据菱形的性质来计算四边形EFGH的周长即可.【详解】如图,连接BD,AC.在矩形ABCD中,AB=4,AD=6,∠DAB=90°,则由勾股定理易求得BD=AC=2.∵矩形ABCD中,E、F、G、H分别是AD、AB、BC、CD的中点,∴EF为△ABC的中位线,∴EF=AC=,EF∥AC,又GH为△BCD的中位线,∴GH=AC=,GH∥AC,∴HG=EF,HG∥EF,∴四边形EFGH是平行四边形.同理可得:FG=BD=,EH=AC=,∴EF=GH=FG=EH=,∴四边形EFGH是菱形.∴四边形EFGH的周长是:4EF=4,故选C.此题考查中点四边形,掌握三角形中位线定理是解题关键二、填空题(本大题共5个小题,每小题4分,共20分)9、(−,0)【解析】

根据一次函数与x轴的交点,y=0;即可求出A点的坐标.【详解】解:∵当y=0时,有,解得:,∴A点的坐标为(−,0);故答案为:(−,0).本题考查了一次函数与x轴的交点坐标,解答此题的关键是熟知一次函数与坐标轴的交点,与x轴有交点,则y=0.10、x≥1.【解析】

根据被开方数大于等于0,分母不等于0列式进行计算即可得解.【详解】解:根据题意得,x﹣1≥0且x≠0,解得x≥1且x≠0,所以,自变量x的取值范围是x≥1.故答案为x≥1.本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.11、甲.【解析】试题分析:根据方差的意义判断.方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.解:∵S甲2<S乙2,∴甲队整齐.故填甲.考点:方差;算术平均数.12、.【解析】

已知数据0,1,2,2,x,3的平均数是2,由平均数的公式计算可得(0+1+2+2+x+3)÷6=2,解得x=4,再根据方差的公式可得,这组数据的方差=[(2﹣0)2+(2﹣1)2+(2﹣2)2+(2﹣2)2+(2﹣4)2+(2﹣3)2]=.13、1【解析】

根据二次根式的性质以及绝对值的性质进行化简,然后合并同类项即可.【详解】∵1<a<2,∴a-2<0,a-1>0,∴=2-a+a-1=1,故答案为:1.本题考查了二次根式的性质及化简,绝对值的性质,熟练掌握相关性质是解题的关键.三、解答题(本大题共5个小题,共48分)14、(1);(2)147元.【解析】

(1)设每个文具盒x元,每支钢笔y元,由题意得:,解之得:.(2)由题意得:w=14x+15(10-x)=150-x,∵w随x增大而减小,,∴当x=3时,W最大值=150-3=147,即最多花147元.15、(1)为直角三角形,理由见解析;(2);(3)当为或或时,为等腰三角形.【解析】

(1)由旋转可以得出和均为等边三角形

,再根据求出,进而可得为直角三角形;(2)因为进而求得,根据,即可求出求的度数;(3)由条件可以表示出∠AOC=250°-a,就有∠AOD=190°-a,∠ADO=a-60°,当∠DAO=∠DOA,∠AOD=ADO或∠OAD=∠ODA时分别求出a的值即可.【详解】解:(1)为直角三角形,理由如下:绕顺时针旋转得到,和均为等边三角形,,,,,为直角三角形;(2)由(1)知:,,,,;(3)∵∠AOB=110°,∠BOC=α∴∠AOC=250°-a.∵△OCD是等边三角形,∴∠DOC=∠ODC=60°,∴∠ADO=a-60°,∠AOD=190°-a,当∠DAO=∠DOA时,2(190°-a)+a-60°=180°,解得:a=140°当∠AOD=ADO时,190°-a=a-60°,解得:a=125°,当∠OAD=∠ODA时,190°-a+2(a-60°)=180°,解得:a=110°∴α=110°,α=140°,α=125°.本题考查了等边三角形的判定与性质的运用,旋转的性质的运用,直角三角形的判定,全等三角形的判定及性质的运用,等腰三角形的判定及性质的运用,解答时证明三角形全等是关键.16、(1)见解析;(2)t=3,;(3).【解析】

(1)根据,求出DQ,AP的长,再根据平行四边形的判定定理即可求解;(2)根据题意得到DE=BE,根据矩形的性质得到,根据全等三角形的性质得到,即可求出t的值,再根据勾股定理即可求解;(3)分别过点、作,,根据矩形的性质可得,求出的长,再根据垂直平分线的性质得到PD=PQ,故DE=PM,代入即可求出t的值.【详解】(1)证明:∵,∴当秒时,两点停止运动,在运动过程中,,∴,当时,,,∴,又∵,∴,∴四边形为平行四边形.(2)如图①,设交于点,若平分对角线,则,∵,∴,,在和中,,∴,∴,,∴,解得,符合题意,∴当秒时,平分对角线,此时,,∵,,∴四边形是平行四边形,过点作于点,∵,,,∴,,∴,由勾股定理,得,∴四边形的周长.(3)如图②,分别过点、作,,分别交于点、,连接、,可得四边形是矩形,,,,在和中,∵,∴,∴,∵点在的垂直平分线上,∴,,四边形是矩形,∴,即,解得,则当为时,点恰好在的垂直平分线上.此题主要考查矩形动点问题,解题的关键是熟知全等三角形的判定与性质、平行四边形的判定与性质.17、(1)180元;(2)方案为A型手表25只,B型手表75只,获利最多,最大利润是7250元.【解析】

(1)设今年A型智能手表每只售价x元,则去年售价每只为(x+60)元,由卖出的数量相同建立方程求出其解即可;

(2)设今年新进A型a只,则B型(100-a)只,获利y元,由条件表示出W与a之间的关系式,由a的取值范围就可以求出W的最大值.【详解】解:(1)今年A型智能手表每只售价x元,去年售价每只为(x+60)元,根据题意得,解得:x=180,经检验,x=180是原方程的根,答:今年A型智能手表每只售价180元;(2)设新进A型手表a只,全部售完利润是W元,则新进B型手表(100-a)只,根据题意得,W=(180-130)a+(230-150)(100-a)=-30a+8000,∵100-a≤3a,∴a≥25,∵-30<0,W随a的增大而减小,∴当a=25时,W增大=-30×25+8000=7250元,此时,进货方案为新进A型手表25只,新进B型手表75只,答:方案为A型手表25只,B型手表75只,获利最多,最大利润是7250元.此题考查分式方程的应用,一次函数的运用,解题关键在于由销售问题的数量关系求出一次函数的解析式是关键.18、(1)24;(2)【解析】

(1)根据有理数的混合运算,先算乘方,再算乘除,最后算加减,即可得出结果;(2)先找到公分母去分母,再去括号化简,然后解一元一次方程即可.【详解】解:(1)(2)解方程:解:本题考查有理数的混合运算以及解一元一次方程;有理数的混合运算要注意运算顺序,并且一定要注意符号问题,比较容易出错;解一元一次方程有分母的要先去分母,去分母的时候注意给分子添括号,然后再去括号,这样不容易出错.一、填空题(本大题共5个小题,每小题4分,共20分)19、①②③【解析】

①根据函数图像的开口、对称轴以及与y轴的交点可得出a、b、c的正负,即可判断正误;②根据函数对称轴可得出a、b之间的等量关系,将转化为,再由函数与x轴的交点关于对称轴对称,可得出另一个交点是(-1,0),即可得出的结果,即可判断正误;③根据a、b之间的等量关系,将不等式中的b代换成a,化简不等式即可判断正误;④根据开口向下的函数有最大值,距离顶点越近的函数值越大,先判断M、N距离顶点的距离即可判断两个点y值得大小.【详解】解:①∵函数开口向下,∴,∵对称轴,,∴;∵函数与y轴交点在y轴上半轴,∴,∴;所以①正确;②∵函数对称轴为,∴,∴,∵A(3,0)是函数与x轴交点,对称轴为,∴函数与x轴另一交点为(-1,0);∵当时,,∴,②正确;③∵函数对称轴为,∴,∴将带入可化为:,∵,不等式左右两边同除a需要不等号变方向,可得:,即,此不等式一定成立,所以③正确;④M(-3,)、N(6,)为函数图象上的两点,∵点M距离顶点4个单位长度,N点距离顶点5个单位长度,函数开口向下,距离顶点越近,函数值越大,∴,所以④错误.故答案为①②③.本题考查二次函数图像与系数的关系,可通过开口判断a的正负,再根据对称轴可判断a、b的关系,即“左同右异”,根据函数与y轴交点的正负可判断c的正负;根据对称轴的具体值可得出a、b之间的等量关系;在比较函数值大小的时候,开口向下的二次函数上的点距离顶点越近,函数值越大即可判断函数值大小.20、1【解析】

△COD的周长=OC+OD+CD,根据平行四边形的对角线互相平分的性质求得OC与OD的长,根据平行四边形的对边相等可得CD=AB=2,进而求得答案【详解】解:∵四边形ABCD是平行四边形,∴OC=OA=AC=3,OD=OB=BD=4,CD=AB=2,∴△COD的周长=OC+OD+CD=3+4+2=1.故答案为1.此题考查平行四边形的性质,解题关键在于画出图形21、1【解析】

两直线平行,则两比例系数相等,据此可以求解.【详解】解:直线与直线平行,,故答案为:1.本题考查了两条直线相交或平行问题,解题的关键是熟知两直线平行时两比例系数相等.22、①②③④【解析】

由翻折的性质可知;AD=AB,DC=BC,∠DAC=∠BCA,由平行线的性质可知∠BAC=∠DCA,从而得到∠ACB=∠BAC,故此AB=BC,从而可知四边形ABCD为菱形,最后依据菱形的性质判断即可.【详解】由翻折的性质可知;AD=AB,DC=BC,∠DAC=∠BCA.∵AB∥DC,∴∠BAC=∠DCA.∴∠BCA=∠BAC.∴AB=BC.∴AB=BC=CD=AD.∴四边形ABCD为菱形.∴AD∥BC,AB=CD,AC⊥BD,AO=CO.故答案为①②③④本题主要考查的是翻折的性质、菱形的性质和判定、等腰三角形的判定、平行线的性质,证得四边形ABCD为菱形是解题的关键.23、(3,0)或(﹣3,0)【解析】试题解析:设点C到原点O的距离为a,∵AC+BC=6,∴a-+a+=6,解得a=3,∴点C的坐标为(3,0)或(-3,0).二、解答题(本大题共3个小题,共30分)24、(1),;(2).【解析】

(1)先进行除法运算,再通分进行化简,将代入化简结果即可得到答案;(2)方程两边都乘以,再移项,系数化为1,检验根的正确性,得到答案.【详解】(1)当时,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论