湖南省永州市双牌县二中2025届高一数学第一学期期末质量跟踪监视试题含解析_第1页
湖南省永州市双牌县二中2025届高一数学第一学期期末质量跟踪监视试题含解析_第2页
湖南省永州市双牌县二中2025届高一数学第一学期期末质量跟踪监视试题含解析_第3页
湖南省永州市双牌县二中2025届高一数学第一学期期末质量跟踪监视试题含解析_第4页
湖南省永州市双牌县二中2025届高一数学第一学期期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省永州市双牌县二中2025届高一数学第一学期期末质量跟踪监视试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在的图象大致为()A. B.C. D.2.如图,正方形的边长为1,它是水平放置的一个平面图形的直观图,则原图形的周长是()A. B.8C.6 D.3.四个函数:①;②;③;④的图象(部分)如下,但顺序被打乱,则按照从左到右将图象对应的函数序号安排正确的一组是()A.④①②③ B.①④②③C.③④②① D.①④③②4.已知函数fx=2x2+bx+c(b,c为实数),f-10=f12.若方程A.4 B.2C.1 D.15.已知,则的周期为()A. B.C.1 D.26.设,且,则()A. B.C. D.7.在边长为3的菱形中,,,则=()A. B.-1C. D.8.命题,则命题p的否定是()A. B.C. D.9.已知直线ax+by+c=0的图象如图,则()A.若c>0,则a>0,b>0B.若c>0,则a<0,b>0C.若c<0,则a>0,b<0D.若c<0,则a>0,b>010.尽管目前人类还无法准确预报地震,但科学研究表明,地震时释放出的能量E(单位:焦耳)与地震里氏M震级之间的关系为lgE=4.8+1.5M.已知两次地震的能量与里氏震级分别为Ei与Mii=1,2,若A.103C.lg3 D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,现有如下几个命题:①该函数为偶函数;

②是该函数的一个单调递增区间;③该函数的最小正周期为;④该函数的图像关于点对称;⑤该函数值域为.其中正确命题的编号为______12.经过点,且在轴上的截距等于在轴上的截距的2倍的直线的方程是__________13.已知直线,直线若,则______________14.函数是幂函数,且当时,是减函数,则实数=_______15.的值为______16.在半径为5的圆中,的圆心角所对的扇形的面积为_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(I)求函数图象的对称轴方程;(II)求函数的最小正周期和值域.18.已知集合,.(1)求,;(2)已知集合,若,求实数的取值范围.19.函数部分图象如下图所示:(1)求函数的解析式;(2)求函数的最小正周期与单调递减区间;(3)求函数在上的值域20.考虑到高速公路行车安全需要,一般要求高速公路的车速(公里/小时)控制在范围内.已知汽车以公里/小时的速度在高速公路上匀速行驶时,每小时的油耗(所需要的汽油量)为升,其中为常数,不同型号汽车值不同,且满足.(1)若某型号汽车以120公里/小时的速度行驶时,每小时的油耗为升,欲使这种型号的汽车每小时的油耗不超过9升,求车速的取值范围;(2)求不同型号汽车行驶100千米的油耗的最小值.21.已知函数(且)的图像经过点.(1)求函数的解析式;(2)若,求实数的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】先由函数为奇函数可排除A,再通过特殊值排除B、D即可.【详解】由,所以为奇函数,故排除选项A.又,则排除选项B,D故选:C2、B【解析】根据斜二测画法得出原图形四边形的性质,然后可计算周长【详解】由题意,所以原平面图形四边形中,,,,所以,所以四边形的周长为:故选:B3、B【解析】根据各个函数的奇偶性、函数值的符号,判断函数的图象特征,即可得到【详解】解:①为偶函数,它的图象关于轴对称,故第一个图象即是;②为奇函数,它的图象关于原点对称,它在上的值为正数,在上的值为负数,故第三个图象满足;③为奇函数,当时,,故第四个图象满足;④,为非奇非偶函数,故它的图象没有对称性,故第二个图象满足,故选:B【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的特征点,排除不合要求的图象.4、B【解析】由f-10=f12求得b=-4,再由方程fx=0有两个正实数根x1【详解】因为函数fx=2x2+bx+c(b所以200-10b+c=288+12b+c,解得b=-4,所以fx因为方程fx=0有两个正实数根x1所以Δ=16-8c≥0解得0<c≤2,所以1x当c=2时,等号成立,所以其最小值是2,故选:B5、A【解析】利用两角和的正弦公式化简函数,代入周期计算公式即可求得周期.【详解】,周期为:故选:A【点睛】本题考查两角和的正弦公式,三角函数的最小正周期,属于基础题.6、D【解析】根据同角三角函数的基本关系,两角和的正弦公式,即可得到答案;详解】,,,,故选:D7、C【解析】运用向量的减法运算,表示向量,再运用向量的数量积运算,可得选项.【详解】.故选:C.【点睛】本题考查向量的加法、减法运算,向量的线性表示,向量的数量积运算,属于基础题.8、A【解析】全称命题的否定是特称命题,并将结论加以否定.【详解】因为命题,所以命题p的否定是,故选:A.9、D【解析】由ax+by+c=0,得斜率k=-,直线在x,y轴上的截距分别为-,-.如图,k<0,即-<0,所以ab>0,因为->0,->0,所以ac<0,bc<0.若c<0,则a>0,b>0;若c>0,则a<0,b<0;故选D.10、A【解析】利用对数运算和指数与对数互化求解.【详解】由题意得:lgE1=4.8+1.5两式相减得:lgE又因为M2所以E2故选:A二、填空题:本大题共6小题,每小题5分,共30分。11、②③【解析】由于为非奇非偶函数,①错误.,此时,其在上为增函数,②正确.由于,所以函数最小正周期为,③正确.由于,故④正确.当时,,故⑤错误.综上所述,正确的编号为②③.12、或【解析】设所求直线方程为,将点代入上式可得或.考点:直线的方程13、【解析】由两条直线垂直,可得,解方程即可求解.详解】若,则,解得,故答案为:【点睛】本题考查了由两条直线互相垂直,求参数的范围,熟练掌握直线垂直的充要条件是解题的关键,考查了运算能力,属于基础题.14、-1【解析】根据幂函数的定义,令m2﹣m﹣1=1,求出m的值,再判断m是否满足幂函数当x∈(0,+∞)时为减函数即可【详解】解:∵幂函数,∴m2﹣m﹣1=1,解得m=2,或m=﹣1;又x∈(0,+∞)时,f(x)为减函数,∴当m=2时,m2+m﹣3=3,幂函数为y=x3,不满足题意;当m=﹣1时,m2+m﹣3=0,幂函数为y=x﹣3,满足题意;综上,m=﹣1,故答案为﹣1【点睛】本题考查了幂函数的定义与图像性质的应用问题,解题的关键是求出符合题意的m值15、【解析】直接利用对数的运算法则和指数幂的运算法则求解即可【详解】16、【解析】先根据弧度的定义求得扇形的弧长,即可由扇形面积公式求得扇形的面积.【详解】设扇形的弧长为根据弧度定义可知则由扇形面积公式代入可得故答案为:【点睛】本题考查了弧度的定义,扇形面积的求法,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(I)(II)周期为,值域为【解析】(I)化简得,进而可求解(II)化简,进而可求解【详解】(I)因为,,所以,由得,对称轴为(II)因为,所以,,周期为,值域为【点睛】方法点睛:需要利用三角公式“化一”,进一步研究正弦型函数的图象和性质,达到解题目的18、(1),;(2).【解析】(1)求出集合,再由集合的交、并、补运算即可求解.(2)根据集合的包含关系列出不等式:且,解不等式即可求解.【详解】(1)∵,∴,∴..∴∴,∴;(2)由(1)知,由,可得且,解得.综上所述:的取值范围是19、(1);(2);;(3).【解析】(1)根据给定函数图象依次求出,再代入作答.(2)由(1)的结论结合正弦函数的性质求解作答.(3)在的条件下,求出(1)中函数的相位范围,再利用正弦函数的性质计算作答.【小问1详解】观察图象得:,令函数周期为,则,,由得:,而,于是得,所以函数的解析式是:.【小问2详解】由(1)知,函数的最小正周期,由解得:,所以函数的最小正周期是,单调递减区间是.【小问3详解】由(1)知,当时,,则当,即时,当,即时,,所以函数在上的值域是.【点睛】思路点睛:涉及求正(余)型函数在指定区间上的值域、最值问题,根据给定的自变量取值区间求出相位的范围,再利用正(余)函数性质求解即得.20、(1);(2)当时,该汽车行驶100千米的油耗的最小值为升;当时,该汽车行驶100千米的油耗的最小值为升.【解析】(1)根据题意,可知当时,求出的值,结合条件得出,再结合,即可得出车速的取值范围;(2)设该汽车行驶100千米的油耗为升,得出关于与的函数关系式,通过换元令,则,得出与的二次函数,再根据二次函数的图象和性质求出的最小值,即可得出不同型号汽车行驶100千米的油耗的最小值.【小问1详解】解:由题意可知,当时,,解得:,由,即,解得:,因为要求高速公路的车速(公里/小时)控制在范围内,即,所以,故汽车每小时的油耗不超过9升,求车速的取值范围.【小问2详解】解:设该汽车行驶100千米的油耗为升,则,令,则,所以,,可得对称轴为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论