2025届江苏省洪泽外国语中学高二数学第一学期期末预测试题含解析_第1页
2025届江苏省洪泽外国语中学高二数学第一学期期末预测试题含解析_第2页
2025届江苏省洪泽外国语中学高二数学第一学期期末预测试题含解析_第3页
2025届江苏省洪泽外国语中学高二数学第一学期期末预测试题含解析_第4页
2025届江苏省洪泽外国语中学高二数学第一学期期末预测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届江苏省洪泽外国语中学高二数学第一学期期末预测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某超市收银台排队等候付款的人数及其相应概率如下:排队人数01234概率0.10.16030.30.10.04则至少有两人排队的概率为()A.0.16 B.0.26C.0.56 D.0.742.若函数既有极大值又有极小值,则实数a的取值范围是()A. B.C. D.3.下列有关命题的表述中,正确的是()A.命题“若是偶数,则,都是偶数”的否命题是假命题B.命题“若为正无理数,则也是无理数”的逆命题是真命题C.命题“若,则”的逆否命题为“若,则”D.若命题“”,“”均为假命题,则,均为假命题4.如图,在直三棱柱中,,,E是的中点,则直线BC与平面所成角的正弦值为()A. B.C. D.5.已知双曲线的方程为,则下列关于双曲线说法正确的是()A.虚轴长为4 B.焦距为C.焦点到渐近线的距离为4 D.渐近线方程为6.已知函数的图象在点处的切线与直线平行,若数列的前项和为,则的值为()A. B.C. D.7.某家庭准备晚上在餐馆吃饭,他们查看了两个网站关于四家餐馆的好评率,如下表所示,考虑每家餐馆的总好评率,他们应选择()网站①评价人数网站①好评率网站②评价人数网站②好评率餐馆甲100095%100085%餐馆乙1000100%200080%餐馆丙100090%100090%餐馆丁200095%100085%A.餐馆甲 B.餐馆乙C.餐馆丙 D.餐馆丁8.命题“∃x0∈(0,+∞),”的否定是()A.∀x∈(﹣∞,0),2x+sinx≥0B.∀x∈(0,+∞),2x+sinx≥0C.∃x0∈(0,+∞),D.∃x0∈(﹣∞,0),9.等差数列的前项和,若,则A.8 B.10C.12 D.1410.已知向量,,且与互相垂直,则()A. B.C. D.11.函数,若实数是函数的零点,且,则()A. B.C. D.无法确定12.设,,则“”是“”的A.充要条件 B.充分而不必要条件C.必要而不充分条件 D.既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.已知正数,满足.若恒成立,则实数的取值范围是______.14.设抛物线的准线方程为__________.15.已知函数,则的值是______.16.三棱锥中,、、两两垂直,且.给出下列四个命题:①;②;③和的夹角为;④三棱锥的体积为.其中所有正确命题的序号为______________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在①,②,③这三个条件中任选一个,补充在下面问题的题设条件中.问题:等差数列的公差为,满足,________?(1)求数列的通项公式;(2)求数列的前项和得到最小值时的值.18.(12分)若等比数列的各项为正,前项和为,且,.(1)求数列的通项公式;(2)若是以1为首项,1为公差的等差数列,求数列的前项和.19.(12分)设数列满足(1)求的通项公式;(2)记数列的前项和为,是否存在实数,使得对任意恒成立.20.(12分)求下列函数的导数.(1);(2).21.(12分)已知点,.(1)求以为直径的圆的方程;(2)若直线被圆截得的弦长为,求值22.(10分)已知抛物线焦点是,斜率为的直线l经过F且与抛物线相交于A、B两点(1)求该抛物线的标准方程和准线方程;(2)求线段AB的长

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】利用互斥事件概率计算公式直接求解【详解】由某超市收银台排队等候付款的人数及其相应概率表,得:至少有两人排队的概率为:故选:D【点睛】本题考查概率的求法、互斥事件概率计算公式,考查运算求解能力,是基础题2、B【解析】函数既有极大值又有极小值转化为导函数在定义域上有两个不同的零点.【详解】因为既有极大值又有极小值,且,所以有两个不等的正实数解,所以,且,解得,且.故选:B.3、C【解析】对于选项A:根据偶数性质即可判断;对于选项B:通过举例即可判断,对于选项C:利用逆否命题的概念即可判断;对于选项D:根据且、或和非的关系即可判断.【详解】选项A:原命题的否命题为:若不是偶数,则,不都是偶数,若,都是偶数,则一定是偶数,从而原命题的否命题为真命题,故A错误;选项B:原命题的逆命题:若是无理数,则也为正无理数,当,即为无理数,但是有理数,故B错误;选项C:由逆否命题的概念可知,C正确;选项D:由为假命题可知,,至少有一个为假命题,由为假命题可知,和均为假命题,故为假命题,为真命题,故D错误.故选:C.4、D【解析】以,,的方向分別为x轴、y轴、z轴的正方向,建立空间直角坐标系,利用向量法即可求出答案.【详解】解:由题意知,CA,CB,CC1两两垂直,以,,的方向分別为x轴、y轴、z轴的正方向,建立如图所示的空间直角坐标系,则,,,,设平面的法向量为,则令,得.因为,所以,故直线BC与平面所成角的正弦值为.故选:D.5、D【解析】根据双曲线的性质逐一判断即可.【详解】在双曲线中,焦点在轴上,,,,所以虚轴长为6,故A错误;焦距为,故B错误;渐近线方程为,故D正确;焦点到渐近线的距离为,故C错误;故选:D.6、A【解析】函数的图象在点处的切线与直线平行,利用导函数的几何含义可以求出,转化求解数列的通项公式,进而由数列的通项公式,利用裂项相消法求和即可【详解】解:∵函数的图象在点处的切线与直线平行,由求导得:,由导函数得几何含义得:,可得,∴,所以,∴数列的通项为,所以数列的前项的和即为,则利用裂项相消法可以得到:所以数列的前2021项的和为:.故选:A.7、D【解析】根据给定条件求出各餐馆总好评率,再比较大小作答.【详解】餐馆甲的总好评率为:,餐馆乙的总好评率为:,餐馆丙的好评率为:,餐馆丁的好评率为:,显然,所以餐馆丁的总好评率最高.故选:D8、B【解析】利用特称命题的否定是全称命题,写出结果即可【详解】命题“∃x0∈(0,+∞),”的否定是“∀x∈(0,+∞),2x+sinx≥0”故选:B9、C【解析】假设公差为,依题意可得.所以.故选C.考点:等差数列的性质.10、D【解析】根据垂直关系可得,由向量坐标运算可构造方程求得结果.【详解】,,又与互相垂直,,解得:.故选:D.11、A【解析】利用函数在递减求解.【详解】因为函数在递减,又实数是函数的零点,即,又因为,所以,故选:A12、C【解析】不能推出,反过来,若则成立,故为必要不充分条件.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】利用基本不等式性质可得的最小值,由恒成立可得即可求出实数的取值范围.【详解】解:因为正数,满足,所以,当且仅当时,即时取等号因为恒成立,所以,解得.故实数的取值范围是.故答案填:.【点睛】熟练掌握基本不等式的性质和正确转化恒成立问题是解题的关键.14、【解析】由题意结合抛物线的标准方程确定其准线方程即可.【详解】由抛物线方程可得,则,故准线方程为.故答案为【点睛】本题主要考查由抛物线方程确定其准线方法,属于基础题.15、【解析】求出,代值计算可得的值.【详解】因为,则,因此,.故答案为:.16、①②③【解析】设,以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,利用空间向量数量积的坐标运算可判断①②③④的正误.【详解】设,由于、、两两垂直,以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,如下图所示:则、、、.对于①,,所以,,①正确;对于②,,,则,②正确;对于③,,,,,所以,和的夹角为,③正确;对于④,,,,则,所以,,而三棱锥的体积为,④错误.故答案为:①②③.【点睛】关键点点睛:在立体几何中计算空间向量的相关问题,可以选择合适的点与直线建立空间直角坐标系,利用空间向量的坐标运算即可.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)选择条件见解析,(2)【解析】(1)设等差数列的公差为,由,得到,选①,联立求解;选②,联立求解;选③,联立求解;(2)由(1)知,令求解.【小问1详解】解:设等差数列的公差为,得,选①,得,故,∴.选②,得,得,故,∴.选③,,得,故,∴;【小问2详解】由(1)知,,,∴数列是递增等差数列.由,得,∴时,,时,,∴时,得到最小值.18、(1)(2)【解析】(1)设公比为,则由已知可得,求出公比,再求出首项,从而可求出数列的通项公式;(2)由已知可得,而,所以,然后利用错位相减法可求得结果【小问1详解】设各项为正的等比数列的公比为,,,则,,,即,解得或(舍去),所以,所以数列的通项公式为.【小问2详解】因为是以1为首项,1为公差的等差数列,所以.由(1)知,所以.所以①在①的等式两边同乘以,得②由①②等式两边相减,得,所以数列的前项和.19、(1)(2)存在【解析】(1)利用“退作差”法求得的通项公式.(2)利用裂项求和法求得,由此求得.【小问1详解】依题意①,当时,.当时,②,①-②得,,时,上式也符合.所以.【小问2详解】.所以.故存在实数,使得对任意恒成立.20、(1);(2).【解析】利用导数的乘除法则,对题设函数求导即可.【小问1详解】.【小问2详解】21、(1).(2)或【解析】(1)根据题意,有A、B的坐标可得线段AB的中点即C的坐标,求出AB的长即可得圆C的半径,由圆的标准方程即可得答案;(2)根据题意,由直线与圆的位置关系可得点C到直线x﹣my+1=0的距离d,结合点到直线的距离公式可得,解可得m的值,即可得答案【详解】(1)根据题意,点,,则线段的中点为,即的坐标为;圆是以线段为直径的圆,则其半径,圆的方程为.(2)根据题意,若直线被圆截得的弦长为,则点到直线的距离,又由,则有,变形可得:,解可得或【点睛】本题考查直线与圆的位置关系以及弦长的计算,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论