




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届云南省通海县三中数学高二上期末联考模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.双曲线x21的渐近线方程是()A.y=±x B.y=±xC.y=± D.y=±2x2.在等差数列中,,表示数列的前项和,则()A.43 B.44C.45 D.463.《莱因德纸草书》是世界上最古老的数学著作之一,书中有一道这样的类似问题:把150个完全相同的面包分给5个人,使每个人所得面包数成等差数列,且使较大的三份面包数之和的是较小的两份之和,则最大的那份面包数为()A.30 B.40C.50 D.604.一直线过点,则此直线的倾斜角为()A.45° B.135°C.-45° D.-135°5.已知实数x,y满足,则的取值范围是()A. B.C. D.6.设,命题“若,则或”的否命题是()A.若,则或B.若,则或C.若,则且D.若,则且7.已知,,,则点C到直线AB的距离为()A.3 B.C. D.8.是数列,,,-17,中的第几项()A第项 B.第项C.第项 D.第项9.直线的倾斜角为()A. B.C. D.10.以轴为对称轴,抛物线通径的长为8,顶点在坐标原点的抛物线的方程是()A. B.C.或 D.或11.已知椭圆的一个焦点坐标为,则的值为()A.1 B.3C.9 D.8112.已知直线l与圆交于A,B两点,点满足,若AB的中点为M,则的最大值为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.某厂将从64名员工中用系统抽样的方法抽取4名参加2011年职工劳技大赛,将这64名员工编号为1~64,若已知8号、24号、56号在样本中,那么样本中最后一个员工的号码是__________14.已知圆的半径为3,,为该圆的两条切线,为切点,则的最小值为___________.15.已知集合,,将中的所有元素按从大到小的顺序排列构成一个数列,则数列的前n项和的最大值为___________.16.已知函数在上单调递减,则的取值范围是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知各项均为正数的等差数列满足,且,,构成等比数列的前三项.(1)求数列,的通项公式;(2)设,求数列的前项和.18.(12分)设函数.(1)当k=1时,求函数的单调区间;(2)当时,求函数在上的最小值m和最大值M.19.(12分)已知圆,直线(1)判断直线l与圆C的位置关系;(2)过点作圆C的切线,求切线的方程20.(12分)如图,已知正四棱锥中,O为底面对角线的交点.(1)求证:平面;(2)求证:平面.21.(12分)已知,:,:.(1)若,为真命题,为假命题,求实数的取值范围;(2)若是的充分不必要条件,求实数的取值范围22.(10分)如图,在三棱锥中,平面平面,且,(1)求证:;(2)求直线与所成角的余弦值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据双曲线渐近线定义即可求解.【详解】双曲线的方程为,双曲线的渐近线方程为,故选:D【点睛】本题主要考查了双曲线的简单几何性质,属于容易题.2、C【解析】根据等差数列的性质,求得,结合等差数列的求和公式,即可求解.【详解】由等差数列中,满足,根据等差数列的性质,可得,所以,则.故选:C.3、C【解析】根据题意得到递增等差数列中,,,从而化成基本量,进行计算,再计算出,得到答案.【详解】根据题意,设递增等差数列,首项为,公差,则所以解得所以最大项.故选:C4、A【解析】根据斜率公式求得直线的斜率,得到,即可求解.【详解】设直线的倾斜角为,由斜率公式,可得,即,因为,所以,即此直线的倾斜角为.故选:A.5、B【解析】实数,满足,通过讨论,得到其图象是椭圆、双曲线的一部分组成的图形,借助图象分析可得的取值就是图象上一点到直线距离范围的2倍,求出切线方程根据平行直线距离公式算出最小值,和最大值的极限值即可得出答案.【详解】因为实数,满足,所以当时,,其图象是位于第一象限,焦点在轴上的双曲线的一部分(含点),当时,其图象是位于第四象限,焦点在轴上的椭圆的一部分,当时,其图象不存在,当时,其图象是位于第三象限,焦点在轴上的双曲线的一部分,作出椭圆和双曲线的图象,其中图象如下:任意一点到直线的距离所以,结合图象可得的范围就是图象上一点到直线距离范围的2倍,双曲线,其中一条渐近线与直线平行,通过图形可得当曲线上一点位于时,取得最小值,无最大值,小于两平行线与之间的距离的倍,设与其图像在第一象限相切于点,由因为或(舍去)所以直线与直线的距离为此时,所以的取值范围是故选:B【点睛】三种距离公式:(1)两点间的距离公式:平面上任意两点间的距离公式为;(2)点到直线的距离公式:点到直线的距离;(3)两平行直线间的距离公式:两条平行直线与间的距离.6、C【解析】根据否命题的定义直接可得.【详解】根据否命题的定义可得命题“若,则或”的否命题是若,则且,故选:C.7、D【解析】应用空间向量的坐标运算求在上投影长及的模长,再应用勾股定理求点C到直线AB的距离.【详解】因为,,所以设点C到直线AB的距离为d,则故选:D8、C【解析】利用等差数列的通项公式即可求解【详解】设数列,,,,是首项为,公差d=-4的等差数列{},,令,得故选:C9、D【解析】由直线斜率概念可写出倾斜角的正切值,进而可求出倾斜角.【详解】因为直线的斜率为,所以倾斜角.故选D【点睛】本题主要考查直线的倾斜角,由斜率的概念,即可求出结果.10、C【解析】由分焦点在轴的正半轴上和焦点在轴的负半轴上,两种情况讨论设出方程,根据,即可求解.【详解】由题意,抛物线的顶点在原点,以轴为对称轴,且通经长为8,当抛物线的焦点在轴的正半轴上时,设抛物线的方程为,可得,解得,所以抛物线方程为;当抛物线的焦点在轴的负半轴上时,设抛物线的方程为,可得,解得,所以抛物线方程为,所以所求抛物线的方程为.故选:C.11、A【解析】根据条件,利用椭圆标准方程中长半轴长a,短半轴长b,半焦距c关系列式计算即得.【详解】由椭圆的一个焦点坐标为,则半焦距c=2,于是得,解得,所以值为1.故选:A12、A【解析】设,,则、,由点在圆上可得,再由向量垂直的坐标表示可得,进而可得M的轨迹为圆,即可求的最大值.【详解】设,中点,则,,又,,则,所以,又,则,而,,所以,即,综上,,整理得,即为M的轨迹方程,所以在圆心为,半径为的圆上,则.故选:A.【点睛】关键点点睛:由点圆位置、中点坐标公式及向量垂直的坐标表示得到关于的轨迹方程.二、填空题:本题共4小题,每小题5分,共20分。13、40【解析】结合系统抽样的抽样方法来确定最后抽取的号码.【详解】因为分段间隔为,故最后一个员工的号码为.故答案为:14、【解析】设(),,则,,,根据数量积的定义和余弦的二倍角公式结合基本不等式即可求解详解】如图所示,设(),,则,,,,当且仅当即时等号成立,∴的最小值是.故答案为:15、【解析】由题意设,,根据可得,从而,即可得出答案.【详解】设,由,得,由,得中的元素满足,即,可得所以,由,所以所以,要使得数列的前n项和的最大值,即求出数列中所以满足的项的和即可.即,得,则所以数列的前n项和的最大值为故答案为:147216、【解析】先求导,求出函数的单调递减区间,由即可求解.【详解】,令,得,即的单调递减区间是,又在上单调递减,可得,即.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),,;(2).【解析】(1)由等差中项的性质可求出,又,,构成等比数列,设出公差,代入可求出,从而求出数列的通项公式,代入可求出,的值,从而求出数列的通项公式;(2)将通项公式代入,运用裂项相消的方法可求出前项和.【详解】解析:(1)因为等差数列中,,所以,设数列公差为,因为,,构成等比数列,则,即,解得或(舍)即,又等比数列中,,所以,;(2)∵,∴,∴【点睛】易错点睛:(1)裂项相消时一定要注意分母的差,一般情况下分母的差是几,则要在裂项前面乘以几分之一;(2)裂项相消时要注意保留的项数.18、(1)增区间为(2),【解析】(1)求导,由判别式可判断导数符号,然后可得;(2)求导,求导数零点,比较函数极值和端点函数值,结合单调性可得.【小问1详解】因为,所以,,因为,所以恒成立所以的增区间为.【小问2详解】当时,,令,解得,当时,,当时,,当时,所以,函数在上单调递增,在上单调递减,在上单调递增.因为,所以在区间上的最大值,最小值为19、(1)相交.(2)或.【解析】(1)先判断出直线恒过定点(2,1),由(2,1)在圆内,即可判断;(2)分斜率存在与不存在两种情况,利用几何法求解.【小问1详解】直线方程,即,则直线恒过定点(2,1).因为,则点(2,1)位于圆的内部,故直线与圆相交.【小问2详解】直线斜率不存在时,直线满足题意;②直线斜率存在的时候,设直线方程为,即.因为直线与圆相切,所以圆心到直线的距离等于半径,即,解得:,则直线方程为:.综上可得,直线方程或.20、(1)证明见解析;(2)证明见解析.【解析】(1)根据给定条件,利用线面平行的判定推理作答.(2)利用正四棱锥的结构特征,结合线面垂直的判定推理作答.小问1详解】在正四棱锥中,由正方形得:,而平面,平面,所以平面.【小问2详解】在正四棱锥中,O为底面对角线的交点,则O是AC,BD的中点,而,,则,,因,平面,所以平面.21、(1)(2)【解析】(1)化简命题p,将m=3代入求出命题q,再根据或、且连接的命题真假确定p,q真假即可得解;(2)由给定条件可得p是q的必要不充分条件,再列式计算作答.【小问1详解】依题意,:,:,得:.当时,:,因为真命题,为假命题,则与一真一假,当真假时,即或,无解,当假真时,即或,解得或,综上得:或,所以实数x的取值范围是;【小问2详解】因是的充分不必要条件,则p是q的必要不充分条件,于是得,解得,所以实数m
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 浙江省杭州市景成实验校2024-2025学年初三考前抢分(三)语文试题含解析
- 招远市2025年四下数学期末复习检测模拟试题含解析
- 汽车配件购销合同范本
- 庐江县重点名校2025届初三第二次模拟考试英语试题含答案
- 江苏省苏州市葛江中学2025届初三下学期联合考试生物试题含解析
- 宁波市重点中学2024-2025学年初三3月教学质量检查化学试题含解析
- 盐城市亭湖区2025届初三5月阶段性检测试题语文试题含解析
- 云南省丽江市重点名校2024-2025学年初三7月四校联考化学试题含解析
- 烘焙食品加工合作协议
- 货物供应合同附加协议范本
- GB/Z 18462-2001激光加工机械金属切割的性能规范与标准检查程序
- GB/T 4457.4-2002机械制图图样画法图线
- GA/T 1567-2019城市道路交通隔离栏设置指南
- QCC培训教材-经典实用资料课件
- 玻璃水汽车风窗玻璃清洗剂检验报告单
- 人力资源部部长岗位廉洁风险点排查
- PPT公路工程施工常见质量通病与防治措施(图文并茂)
- 提升中西医协同协作能力实施方案
- 热烈欢迎某某公司领导莅临指导
- 多旋翼理论-AOPA考证试题库(含答案)
- 电解铝供电整流系统的优化改造
评论
0/150
提交评论