![江苏省盐城市时杨中学2025届数学高一上期末学业质量监测试题含解析_第1页](http://file4.renrendoc.com/view9/M01/14/02/wKhkGWcb4GCAXzJAAAGjR6wsOUQ141.jpg)
![江苏省盐城市时杨中学2025届数学高一上期末学业质量监测试题含解析_第2页](http://file4.renrendoc.com/view9/M01/14/02/wKhkGWcb4GCAXzJAAAGjR6wsOUQ1412.jpg)
![江苏省盐城市时杨中学2025届数学高一上期末学业质量监测试题含解析_第3页](http://file4.renrendoc.com/view9/M01/14/02/wKhkGWcb4GCAXzJAAAGjR6wsOUQ1413.jpg)
![江苏省盐城市时杨中学2025届数学高一上期末学业质量监测试题含解析_第4页](http://file4.renrendoc.com/view9/M01/14/02/wKhkGWcb4GCAXzJAAAGjR6wsOUQ1414.jpg)
![江苏省盐城市时杨中学2025届数学高一上期末学业质量监测试题含解析_第5页](http://file4.renrendoc.com/view9/M01/14/02/wKhkGWcb4GCAXzJAAAGjR6wsOUQ1415.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省盐城市时杨中学2025届数学高一上期末学业质量监测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.过点且平行于直线的直线方程为A. B.C. D.2.直线与曲线有且仅有个公共点,则实数的取值范围是A. B.C. D.3.设函数,若,则的取值范围为A. B.C. D.4.已知向量,,且,那么()A.2 B.-2C.6 D.-65.若角满足条件,且,则在A.第一象限 B.第二象限C.第三象限 D.第四象限6.已知,则的值为()A. B.C. D.7.函数的图像与函数的图像所有交点的横坐标之和等于A2 B.4C.6 D.88.已知为角终边上一点,则()A. B.1C.2 D.39.已知全集,,,则集合A. B.C. D.10.当时,函数和的图像只可能是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的递增区间是__________________12.已知,用m,n表示为___________.13.已知函数的定义域和值域都是集合,其定义如表所示,则____________.x01201214.直线与函数的图象相交,若自左至右的三个相邻交点依次为、、,且满足,则实数________15.已知扇形的圆心角为,扇形的面积为,则该扇形的弧长为____________.16.为了得到函数的图象,可以将函数的图象向右平移_________个单位长度而得三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.二次函数f(x)满足f(x+1)-f(x)=2x,且f(0)=1.(1)求f(x)的解析式;(2)解不等式f(x)>2x+5.18.体育课上,小明进行一项趣味测试,在操场上从甲位置出发沿着同一跑道走到乙位置,有两种不同的行走方式(以下).方式一:小明一半的时间以的速度行走,刹余一半时间换为以的速度行走,平均速度为;方式二:小明一半的路程以的速度行走,剩余一半路程换为以的速度行走,平均速度为;(1)试求两种行走方式的平均速度;(2)比较的大小.19.函数.(1)用五点作图法画出函数一个周期图象,并求函数的振幅、周期、频率、相位;(2)此函数图象可由函数怎样变换得到.20.某企业开发生产了一种大型电子产品,生产这种产品的年固定成本为2500万元,每生产百件,需另投入成本(单位:万元),当年产量不足30百件时,;当年产量不小于30百件时,;若每件电子产品的售价为5万元,通过市场分析,该企业生产的电子产品能全部销售完.(1)求年利润(万元)关于年产量(百件)的函数关系式;(2)年产量为多少百件时,该企业在这一电子产品的生产中获利最大?21.已知函数,其中m为常数,且(1)求m的值;(2)用定义法证明在R上是减函数
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】解析:设与直线平行直线方程为,把点代入可得,所以所求直线的方程为,故选A2、A【解析】如图所示,直线过点,圆的圆心坐标直线与曲线相切时,,直线与曲线有且仅有个公共点,则实数的取值范围是考点:直线与圆相交,相切问题3、A【解析】根据对数函数的性质单调递增,,列出不等式,解出即可.【详解】∵函数在定义域内单调递增,,∴不等式等价于,解得,故选A.【点睛】本题主要考查了对数不等式的解法,在解题过程中要始终注意函数的定义域,也是易错点,属于中档题.4、B【解析】根据向量共线的坐标表示,列出关于m的方程,解得答案.【详解】由向量,,且,可得:,故选:B5、B【解析】因为,所以在第二或第四象限,且,所以在第二象限考点:三角函数的符号6、B【解析】在所求分式的分子和分母中同时除以,结合两角差的正切公式可求得结果.【详解】.故选:B.7、D【解析】由于函数与函数均关于点成中心对称,结合图形以点为中心两函数共有个交点,则有,同理有,所以所有交点横坐标之和为.故正确答案为D.考点:1.函数的对称性;2.数形结合法的应用.8、B【解析】先根据三角函数的定义求出,再利用齐次化将弦化切进行求解.【详解】为角终边上一点,故,故.故选:B9、D【解析】因为A∪B={x|x≤0或x≥1},所以,故选D.考点:集合的运算.10、A【解析】由一次函数的图像判断出a、b的符号,结合指数函数的图像一一进行判断可得答案.【详解】解:A项,由一次函数的图像可知此时函数为减函数,故A项正确;B项,由一次函数的图像可知此时函数为增函数,故B项错误;C项,由一次函数的图像可知,此时函数为的直线,故C项错误;D项,由一次函数的图像可知,,此时函数为增函数,故D项错误;故选A.【点睛】本题主要考查指数函数的图像特征,相对简单,由直线得出a、b的范围对指数函数进行判断是解题的关键.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由已知有,解得,即函数的定义域为,又是开口向下的二次函数,对称轴,所以的单调递增区间为,又因为函数以2为底的对数型函数,是增函数,所以函数的递增区间为点睛:本题主要考查复合函数的单调区间,属于易错题.在求对数型函数的单调区间时,一定要注意定义域12、【解析】结合换底公式以及对数的运算法则即可求出结果.详解】,故答案为:.13、【解析】根据表格从里层往外求即可.【详解】解:由表可知,.故答案为:.14、或【解析】设点、、的横坐标依次为、、,由题意可知,根据题意可得出关于、的方程组,分、两种情况讨论,求出的值,即可求得的值.【详解】设点、、的横坐标依次为、、,则,当时,因为,所以,,即,因为,得,因为,则,即,可得,所以,,可得,所以,;当时,因为,所以,,即,因为,得,因为,则,即,可得,所以,,可得,所以,.综上所述,或.故答案为:或.15、【解析】利用扇形的面积求出扇形的半径,再带入弧长计算公式即可得出结果【详解】解:由于扇形的圆心角为,扇形的面积为,则扇形的面积,解得:,此扇形所含的弧长.故答案为:.16、(答案不唯一);【解析】由于,再根据平移求解即可.【详解】解:由于,故将函数的图象向右平移个单位长度可得函数图像.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)设二次函数f(x)=ax2+bx+c,利用待定系数法即可求出f(x);(2)利用一元二次不等式的解法即可得出【详解】(1).设二次函数f(x)=ax2+bx+c,∵函数f(x)满足f(x+1)﹣f(x)=2x,f(x+1)-f(x)=-=2ax+a+b=2x,解得.且f(0)=1.c=1∴f(x)=x2﹣x+1(2)不等式f(x)>2x+5,即x2﹣x+1>2x+5,化为x2﹣3x﹣4>0化为(x﹣4)(x+1)>0,解得x>4或x<﹣1∴原不等式的解集为【点睛】本题考查了用待定系数法求二次函数的解析式和一元二次不等式的解法,熟练掌握其方法是解题的关键,属于中档题.18、(1),(2)【解析】(1)直接利用平均速度的定义求出;(2)利用作差法比较大小.【小问1详解】设方式一中小明行走的总路程为s,所用时间为,由题意得,可知设方式二中所用时间为,总路程为s,则【小问2详解】.因为且,所以,即.19、(1)答案见解析(2)答案见解析【解析】(1)由分别等于,计算描点作图,并由三角函数性质求解(2)根据三角函数图象变换规则作答【小问1详解】列表:0020-20描点连线(如图):振幅:2,周期,频率,相位:【小问2详解】把的图象向右平移个单位,然后图象上所有点的的横坐标扩大为原来的3倍,纵坐标不变,再把所得图象上所有点的横坐标不变,纵坐标扩大为原来的2倍,得图象的解析式为20、(1);(2)100百件【解析】(1)根据收益总收入成本,进行分情况讨论,构建出分段函数;(2)对分段函数每一段进行研究最大值,然后再求出整个函数的最大值.【详解】解:(1)当时,;当时,;;(2)当时,,当时,;当时,,当且仅当,即时,.年产量为100百件时,该企业获得利润最大,最大利润为1800万元.【点睛】本题考查了数学
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2030年全功能精密线材测试分析仪项目投资价值分析报告
- 2025年外围驱动器项目可行性研究报告
- 2025年发泡PE板项目可行性研究报告
- 2025至2030年汽油机械叉车项目投资价值分析报告
- 抗寄生虫病药项目绩效评估报告
- 衬衫、夹克生产项目可行性研究报告申请备案
- 2025年度建筑工程施工合同材料设备采购与供应
- 2025年度城市轨道交通机电安装工程合同样本
- 2025年合伙购买房产售后服务合同
- 2025年度智能穿戴设备研发制造合同
- 中国人口研究专题报告-中国2025-2100年人口预测与政策建议-西南财经大学x清华大学-202501
- 2025年度厨师职业培训学院合作办学合同4篇
- 《组织行为学》第1章-组织行为学概述
- 25版六年级寒假特色作业
- 浙江省杭州市9+1高中联盟2025届高三一诊考试英语试卷含解析
- 市场营销试题(含参考答案)
- 2024年山东省泰安市高考物理一模试卷(含详细答案解析)
- 护理指南手术器械台摆放
- 肿瘤患者管理
- 四川省成都市高新区2024年七年级上学期语文期末试卷【含答案】
- GB/T 19228.1-2024不锈钢卡压式管件组件第1部分:卡压式管件
评论
0/150
提交评论