2024-2025学年福建省厦门十一中九年级(上)第一次月考数学试卷_第1页
2024-2025学年福建省厦门十一中九年级(上)第一次月考数学试卷_第2页
2024-2025学年福建省厦门十一中九年级(上)第一次月考数学试卷_第3页
2024-2025学年福建省厦门十一中九年级(上)第一次月考数学试卷_第4页
2024-2025学年福建省厦门十一中九年级(上)第一次月考数学试卷_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第1页(共1页)2024-2025学年福建省厦门十一中九年级(上)第一次月考数学试卷一、选择题(每小题4分,共40分)1.(4分)下列各式中,是最简二次根式的是()A. B. C. D.2.(4分)以下列各组数为三角形的三边长,能构成直角三角形的是()A.1,1,1 B.5,12,14 C.3,4,5 D.2,3,3.(4分)下列计算中,正确的是()A. B. C. D.4.(4分)二次函数y=(x+2)2﹣3的顶点坐标是()A.(2,﹣3) B.(﹣2,﹣3) C.(2,3) D.(﹣2,3)5.(4分)已知点A(1,y1),B(2,y2)都在正比例函数y=3x的图象上,则y1与y2的大小关系是()A.y1>y2 B.y1<y2 C.y1=y2 D.y1≥y26.(4分)若关于x的一元二次方程x2﹣4x+c=0有两个相等的实数根,则实数c的值为()A.﹣16 B.﹣4 C.4 D.167.(4分)某校艺术节歌唱比赛中,有15位评委对选手的表现打分,某位选手所得15个分数组成轮一组数据.根据评分规则,剩余13个分数作为一组新数据.下列统计量中,新数据与原数据相比一定不变的是()A.平均数 B.众数 C.方差 D.中位数8.(4分)如图,长30m,宽20m的矩形基地上有三条宽xm的小路2种花,依题意列方程()A.20x+30×2x=600﹣522 B.20x+30×2x﹣x2=600﹣522 C.(20﹣2x)(30﹣x)=522 D.(20﹣x)(30﹣2x)=5229.(4分)如图,正方形ABCD的对角线交于点O,点E是直线BC上一动点.若AB=4()A. B. C. D.10.(4分)如图1,在△ABC中,∠A=90°,AC=4,P是边BC上的一个动点,PE⊥AC于点E,连接DE.如图2所示的图象中,,y与x之间的对应关系可以用图2所示图象表示的是()A.点P与B的距离为x,点P与C的距离为y B.点P与B的距离为x,点D与E的距离为y C.点P与D的距离为x,点P与E的距离为y D.点P与D的距离为x,点D与E的距离为y二.填空题(每小题4分,共24分)11.(4分)若在实数范围内有意义,则x的取值范围是.12.(4分)如果二次函数y=(2a﹣1)x2的图象开口向下,则a的取值范围是.13.(4分)如图,在△ABC中,点D,BC的中点,连接DE.若DE=12.14.(4分)若m,n是一元二次方程x2﹣5x+2=0的两个实数根,则m+(n﹣2)2的值为.15.(4分)小华从家出发沿笔直的马路匀速步行去图书馆听讲座,几分钟后,爸爸发现小华忘带图书馆的出入卡,爸爸追上小华后以原速度沿原路回家.小华拿到出入卡后以原速度的1.2倍快步赶往图书馆,并在从家出发20min时到达图书馆(小华被爸爸追上时交流的时间忽略不计),小华与爸爸之间的距离y与小华离家的时间x的对应关系如图所示.(1)小华从家出发min时,爸爸追上小华;(2)图书馆离小华家m.16.(4分)函数,其中m是常数且m≠0,该函数的图象记为G.(1)当时,图象G与x轴的交点坐标为.(2)若直线y=m与该函数图象G恰好只有两个交点,则m的取值为.三.解答题(共86分)17.(8分)解下列方程:(1)(x﹣2)2﹣9=0;(2)x2+3x﹣4=0.18.(8分)如图,在▱ABCD中,AC,点E,F在AC上(1)求证:四边形EBFD是平行四边形;(2)若∠BAC=∠DAC,求证:四边形EBFD是菱形.19.(8分)已知一个二次函数图象上部分点的横坐标x与纵坐标y的对应值如表所示:x…﹣3﹣2﹣101…y…0﹣3﹣4﹣30…(1)这个二次函数的解析式是;(2)在给定的平面直角坐标系中画出这个二次函数的图象;(3)当﹣4<x<0时,y的取值范围为.20.(8分)已知关于x的一元二次方程x2﹣mx+m﹣1=0.(1)求证:无论m取何值,方程总有两个实数根;(2)若▱ABCD的两邻边AB,AD的长是该方程的两个实数根.当m取何值时,▱ABCD是菱形?求出此时菱形的边长.21.(8分)刺绣是我国民间传统手工艺,湘绣作为中国四大刺绣之一,闻名中外,某国际旅游公司计划购买A、B两种奥运主题的湘绣作品作为纪念品.已知购买1件A种湘绣作品与2件B种湘绣作品共需要700元,购买2件A种湘绣作品与3件B种湘绣作品共需要1200元.(1)求A种湘绣作品和B种湘绣作品的单价分别为多少元?(2)该国际旅游公司计划购买A种湘绣作品和B种湘绣作品共200件,总费用不超过50000元,那么最多能购买A种湘绣作品多少件?22.(10分)某果园收获了一批苹果,有2000个苹果作为大果装入包装盒进行销售.设苹果的果径为xmm,其中A款包装盒中的苹果果径要求是80≤x<85,测量它们的果径(单位:mm),所得数据整理如下:8081828283848485868687878789909192929498(1)这20个苹果的果径的众数是,中位数是;(2)如果一个包装盒中苹果果径的方差越小,那么认为该包装盒中的苹果大小越均匀.从抽取的苹果中分别选出6个装入两个包装盒,其果径如表所示.包装盒1的苹果果径808182828384包装盒2的苹果果径868687878789其中,包装盒中的苹果大小更均匀(填“1”或“2”);(3)请估计这2000个苹果中,符合A款包装盒要求的苹果有多少个?23.(12分)如图,已知直线l1∥l2.(1)在l1,l2所在的平面内求作直线l,使得l∥l1∥l2,且l与l1间的距离恰好等于l与l2间的距离;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,若l1与l2间的距离为2,点A,B,C分别在l,l1,l2上,且△ABC为等腰直角三角形,求△ABC的面积.24.(12分)综合与实践问题情境:如图1,矩形MNKL是学校花园的示意图,其中一个花坛的轮廓可近似看成由抛物线的一部分与线段AB组成的封闭图形,B在矩形的边MN上.现要对该花坛内种植区域进行划分,以种植不同花卉方案设计:如图2,AB=6米,AB的垂直平分线与抛物线交于点P,点P是抛物线的顶点,且PO=9米.欣欣设计的方案如下:第一步:在线段OP上确定点C,使∠ACB=90°,用篱笆沿线段AC,种植串串红;第二步:在线段CP上取点F(不与C,P重合),过点F作AB的平行线,交抛物线于点D,CF将线段AC,BC与抛物线围成的区域分隔成三部分方案实施:学校采用了欣欣的方案,在完成第一步△ABC区域的分隔后,发现仅剩6米篱笆材料.若要在第二步分隔中恰好用完6米材料,欣欣在图2中以AB所在直线为x轴,OP所在直线为y轴建立平面直角坐标系.请按照她的方法解决问题:(1)在图2中画出坐标系,并求抛物线的函数表达式;(2)求6米材料恰好用完时DE与CF的长;(3)种植区域分隔完成后,欣欣又想用灯带对该花坛进行装饰,计划将灯带围成一个矩形.她尝试借助图2设计矩形四个顶点的位置,另外两个顶点分别在线段AC,BC上.直接写出符合设计要求的矩形周长的最大值.25.(12分)如图,已知正方形ABCD中,E为CB延长线上一点,M、N分别为AE、BC的中点,连DE交AB于O,ED于H点.(1)求证:AO=BO;(2)求证:∠HEB=∠HNB;(3)过A作AP⊥ED于P点,连BP,则的值.

2024-2025学年福建省厦门十一中九年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(每小题4分,共40分)1.(4分)下列各式中,是最简二次根式的是()A. B. C. D.【解答】解:A、=2,故本选项不符合题意;B、=3,故本选项不符合题意;C、是最简二次根式;D、=,不是最简二次根式;故选:C.2.(4分)以下列各组数为三角形的三边长,能构成直角三角形的是()A.1,1,1 B.5,12,14 C.3,4,5 D.2,3,【解答】解:∵12+82≠16,∴长为1,1,7的三边不能组成直角三角形,故A不符合题意;∵52+127≠142,∴长为5,12,故B不符合题意;∵82+42=52,∴长为2,4,5的三边能组成直角三角形,故C符合题意;∵,∴长为2,3,的三边不能组成直角三角形,故D不符合题意;故选:C.3.(4分)下列计算中,正确的是()A. B. C. D.【解答】解:A、与不是同类二次根式,不符合题意;B、6﹣=7,不符合题意;C、÷=,原计算错误;D、×==6,符合题意,故选:D.4.(4分)二次函数y=(x+2)2﹣3的顶点坐标是()A.(2,﹣3) B.(﹣2,﹣3) C.(2,3) D.(﹣2,3)【解答】解:二次函数y=(x+2)2﹣6的图象的顶点坐标是(﹣2,﹣3).故选:B.5.(4分)已知点A(1,y1),B(2,y2)都在正比例函数y=3x的图象上,则y1与y2的大小关系是()A.y1>y2 B.y1<y2 C.y1=y2 D.y1≥y2【解答】解:由题意可知y随x的增大而增大,∵点A(1,y1),B(6,y2)都在正比例函数y=3x的图象上,4<2,∴y1<y4,故选:B.6.(4分)若关于x的一元二次方程x2﹣4x+c=0有两个相等的实数根,则实数c的值为()A.﹣16 B.﹣4 C.4 D.16【解答】解:因为关于x的一元二次方程x2﹣4x+c=4有两个相等的实数根,所以Δ=(﹣4)2﹣7c=0,解得c=4.故选:C.7.(4分)某校艺术节歌唱比赛中,有15位评委对选手的表现打分,某位选手所得15个分数组成轮一组数据.根据评分规则,剩余13个分数作为一组新数据.下列统计量中,新数据与原数据相比一定不变的是()A.平均数 B.众数 C.方差 D.中位数【解答】解:统计每位选手得分时,会去掉一个最高分和一个最低分,即中位数.故选:D.8.(4分)如图,长30m,宽20m的矩形基地上有三条宽xm的小路2种花,依题意列方程()A.20x+30×2x=600﹣522 B.20x+30×2x﹣x2=600﹣522 C.(20﹣2x)(30﹣x)=522 D.(20﹣x)(30﹣2x)=522【解答】解:由题意可得,(30﹣x)(20﹣2x)=522,故选:C.9.(4分)如图,正方形ABCD的对角线交于点O,点E是直线BC上一动点.若AB=4()A. B. C. D.【解答】解:如图所示,作点A关于直线BC的对称点A',其与BC的交点即为点E,∵A与A'关于BC对称,∴AE=A'E,AE+OE=A'E+OE,O,E在同一条线上的时候和最小,此时AE+OE=A'E+OE=A'O,∵正方形ABCD,点O为对角线的交点,∴,∵A与A'关于BC对称,∴AB=BA'=4,∴FA'=FB+BA'=2+7=6,在Rt△OFA'中,,故选:D.10.(4分)如图1,在△ABC中,∠A=90°,AC=4,P是边BC上的一个动点,PE⊥AC于点E,连接DE.如图2所示的图象中,,y与x之间的对应关系可以用图2所示图象表示的是()A.点P与B的距离为x,点P与C的距离为y B.点P与B的距离为x,点D与E的距离为y C.点P与D的距离为x,点P与E的距离为y D.点P与D的距离为x,点D与E的距离为y【解答】解:∵在△ABC中,∠A=90°,AC=4,∴BC==5,如图所示,连接AP,∵S△ABC=AB•AC=,∴S△ABC=×3×5=,∴AF=,∴BF==,∵PD⊥AB,PE⊥AC,∴四边形ADPE是矩形,∴DE=AP,∴当AP⊥BC时,AP最小,∴DE的最小值为,而点P到点E的距离可以无限小,∴由函数图象可知点D与E的距离为y,而点P到点D的距离可以无限性,∴由函数图象可知点P与B的距离为x.故选:B.二.填空题(每小题4分,共24分)11.(4分)若在实数范围内有意义,则x的取值范围是x≥5.【解答】解:由题意得:x﹣5≥0,解得:x≥3,故答案为:x≥5.12.(4分)如果二次函数y=(2a﹣1)x2的图象开口向下,则a的取值范围是.【解答】解:∵二次函数y=(2a﹣1)x2的图象开口向下,∴2a﹣1<7,∴.故答案为:.13.(4分)如图,在△ABC中,点D,BC的中点,连接DE.若DE=1224.【解答】解:∵点D,E分别是AC,∴DE是△ABC的中位线,∴AB=2DE=24,故答案为:24.14.(4分)若m,n是一元二次方程x2﹣5x+2=0的两个实数根,则m+(n﹣2)2的值为7.【解答】解:∵m,n是一元二次方程x2﹣5x+8=0的两个实数根,∴m2﹣4m+2=0,m+n=4,∴m2﹣5m=﹣2,n=5﹣m∴m+(n﹣2)6=m+(3﹣m)2=m8﹣5m+9=﹣7+9=7.故答案为:8.15.(4分)小华从家出发沿笔直的马路匀速步行去图书馆听讲座,几分钟后,爸爸发现小华忘带图书馆的出入卡,爸爸追上小华后以原速度沿原路回家.小华拿到出入卡后以原速度的1.2倍快步赶往图书馆,并在从家出发20min时到达图书馆(小华被爸爸追上时交流的时间忽略不计),小华与爸爸之间的距离y与小华离家的时间x的对应关系如图所示.(1)小华从家出发10min时,爸爸追上小华;(2)图书馆离小华家1760m.【解答】解:(1)由图象可知,小华从家出发10min时,即爸爸追上小华时;故答案为:10;(2)由图象可知,爸爸追上小华后用14﹣10=4(min)回到家,∴小华提速前的速度与爸爸的速度比为4:10=,设爸爸速度为xm/min,则小华提速前的速度为,提速后速度为xm/min,∴8(x+x)=1184,解得x=200,∴小华提速前的速度为x=200×,提速后速度为=96(m/min),∵10×80+(20﹣10)×96=1760(m),∴图书馆离小华家1760m,故答案为:1760.16.(4分)函数,其中m是常数且m≠0,该函数的图象记为G.(1)当时,图象G与x轴的交点坐标为(3,0).(2)若直线y=m与该函数图象G恰好只有两个交点,则m的取值为3或﹣1.【解答】解:(1)当x≥0时,对称轴为直线x=,当x<0时,对称轴为直线x=,又当m=时,函数y=,当x≥0时,令x2﹣7x﹣3=0,∴(x﹣7)(x+1)=0,∴x6=3或x2=﹣7(舍去),∴x≥0时,x=3;当x<5时,令﹣x2﹣2x﹣4=0,∴x2+2x+3=0,∵Δ=2﹣12<0,∴x<0,无解,∴与x轴的交点坐标为(8,0);(2)当m>0时,图象大致如图6所示,当y=m经过顶点时,恰有2个交点,∴当x=﹣1时,y=﹣8m+4m﹣3=2m﹣3=m,∴m=3;∴当x=7时,y=2m﹣4m﹣4=﹣2m﹣3=m,∴m=﹣8(舍去),当m<0时,图象大致如图2所示,当y=m经过顶点时,恰有2个交点,当x=﹣1时,y=﹣2m+8m﹣3=2m﹣7=m,∴m=3(舍去),当x=1时,y=8m﹣4m﹣3=﹣6m﹣3=m,∴m=﹣1,综上所述,m取值为8或﹣1.三.解答题(共86分)17.(8分)解下列方程:(1)(x﹣2)2﹣9=0;(2)x2+3x﹣4=0.【解答】解:(1)(x﹣2)2﹣6=0;x﹣2﹣2=0或x﹣2+3=0,所以x1=7,x2=﹣1;(2)x2+3x﹣4=8.(x+4)(x﹣1)=8,x+4=0或x﹣2=0,所以x1=﹣8,x2=1.18.(8分)如图,在▱ABCD中,AC,点E,F在AC上(1)求证:四边形EBFD是平行四边形;(2)若∠BAC=∠DAC,求证:四边形EBFD是菱形.【解答】证明:(1)在▱ABCD中,OA=OC,∵AE=CF.∴OE=OF,∴四边形EBFD是平行四边形;(2)∵四边形ABCD是平行四边形,∴AB∥DC,∴∠BAC=∠DCA,∵∠BAC=∠DAC,∴∠DCA=∠DAC,∴DA=DC,∴平行四边形ABCD为菱形,∴DB⊥EF,∴平行四边形EBFD是菱形.19.(8分)已知一个二次函数图象上部分点的横坐标x与纵坐标y的对应值如表所示:x…﹣3﹣2﹣101…y…0﹣3﹣4﹣30…(1)这个二次函数的解析式是y=x2+2x﹣3;(2)在给定的平面直角坐标系中画出这个二次函数的图象;(3)当﹣4<x<0时,y的取值范围为﹣4≤y<5.【解答】解:(1)由题意可得二次函数的顶点坐标为(﹣1,﹣4),设二次函数的解析式为:y=a(x+5)2﹣4,把点(8,﹣3)代入y=a(x+1)3﹣4,得a=1,故抛物线解析式为y=(x+5)2﹣4,即y=x6+2x﹣3;(2)如图所示:(3)∵y=(x+4)2﹣4,∴当x=﹣5时,y=(﹣4+1)6﹣4=5,当x=﹣7时,y=﹣3,又对称轴为x=﹣1,∴当﹣8<x<0时,y的取值范围是﹣4≤y<6.20.(8分)已知关于x的一元二次方程x2﹣mx+m﹣1=0.(1)求证:无论m取何值,方程总有两个实数根;(2)若▱ABCD的两邻边AB,AD的长是该方程的两个实数根.当m取何值时,▱ABCD是菱形?求出此时菱形的边长.【解答】(1)证明:∵Δ=(﹣m)2﹣4(m﹣7)=m2﹣4m+7=(m﹣2)2≥4,∴无论m取何值,方程总有两个实数根;(2)解:当AB=AD时,▱ABCD是菱形,∴Δ=(m﹣2)2=5,解得m=2,此时方程为x2﹣6x+1=0,解得x2=x2=1,即此时菱形的边长为4.21.(8分)刺绣是我国民间传统手工艺,湘绣作为中国四大刺绣之一,闻名中外,某国际旅游公司计划购买A、B两种奥运主题的湘绣作品作为纪念品.已知购买1件A种湘绣作品与2件B种湘绣作品共需要700元,购买2件A种湘绣作品与3件B种湘绣作品共需要1200元.(1)求A种湘绣作品和B种湘绣作品的单价分别为多少元?(2)该国际旅游公司计划购买A种湘绣作品和B种湘绣作品共200件,总费用不超过50000元,那么最多能购买A种湘绣作品多少件?【解答】解:(1)设A种湘绣作品的单价为x元,B种湘绣作品的单价为y元,根据题意得:,解得:.答:A种湘绣作品的单价为300元,B种湘绣作品的单价为200元;(2)设购买A种湘绣作品m件,则购买B种湘绣作品(200﹣m)件,根据题意得:300m+200(200﹣m)≤50000,解得:m≤100,∴m的最大值为100.答:最多能购买100件A种湘绣作品.22.(10分)某果园收获了一批苹果,有2000个苹果作为大果装入包装盒进行销售.设苹果的果径为xmm,其中A款包装盒中的苹果果径要求是80≤x<85,测量它们的果径(单位:mm),所得数据整理如下:8081828283848485868687878789909192929498(1)这20个苹果的果径的众数是87,中位数是86.5;(2)如果一个包装盒中苹果果径的方差越小,那么认为该包装盒中的苹果大小越均匀.从抽取的苹果中分别选出6个装入两个包装盒,其果径如表所示.包装盒1的苹果果径808182828384包装盒2的苹果果径868687878789其中,包装盒2中的苹果大小更均匀(填“1”或“2”);(3)请估计这2000个苹果中,符合A款包装盒要求的苹果有多少个?【解答】解:(1)87出现的次数最多,故众数是87;把20个苹果的果径从小到大排列,排在中间的两个数分别是86,故中位数是;故答案为:87,86.5;(2)包装盒5的平均数为=82,包装盒1的方差为:×[(80﹣82)2+(81﹣82)7+(82﹣82)2+(82﹣82)2+(83﹣82)5+(84﹣82)2]=,包装盒2的平均数为=87,包装盒8的方差为:×[8×(86﹣87)2+3×(87﹣87)7+(89﹣87)2]=1;因为3<,所以甲供应商供应的苹果大小更为整齐.故答案为:甲;(3)2000×=700(个),答:估计符合A款包装盒要求的苹果有700个.23.(12分)如图,已知直线l1∥l2.(1)在l1,l2所在的平面内求作直线l,使得l∥l1∥l2,且l与l1间的距离恰好等于l与l2间的距离;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,若l1与l2间的距离为2,点A,B,C分别在l,l1,l2上,且△ABC为等腰直角三角形,求△ABC的面积.【解答】解:(1)如图1,直线l即为所求作的直线;(2)①当∠BAC=90°,AB=AC时,∵l∥l1∥l7,直线l1与l2间的距离为3,且l与l1间的距离等于l与l2间的距离,根据图形的对称性可知:BC=5,∴,∴,②当∠ABC=90°,BA=BC时,如图3,分别过点A8的垂线,垂足为M,N,∴∠AMB=∠BNC=90°,∵l∥l1∥l2,直线l2与l2间的距离为2,且l与l2间的距离等于l与l2间的距离,∴CN=2,AM=7,∵∠MAB+∠ABM=90°,∠NBC+∠ABM=90°,∴∠MAB=∠NBC,∴△AMB≌△BNC(AAS),∴BM=CN=2,在Rt△ABM中,由勾股定理得AB2=AM3+BM2=17+22=4,∴,∴,③当∠ACB=90°,CA=CB时,,综上所述,△ABC的面积为1或.24.(12分)综合与实践问题情境:如图1,矩形MNKL是学校花园的示意图,其中一个花坛的轮廓可近似看成由抛物线的一部分与线段AB组成的封闭图形,B在矩形的边MN上.现要对该花坛内种植区域进行划分,以种植不同花卉方案设计:如图2,AB=6米,AB的垂直平分线与抛物线交于点P,点P是抛物线的顶点,且PO=9米.欣欣设计的方案如下:第一步:在线段OP上确定点C,使∠ACB=90°,用篱笆沿线段AC,种植串串红;第二步:在线段CP上取点F(不与C,P重合),过点F作AB的平行线,交抛物线于点D,CF将线段AC,BC与抛物线围成的区域分隔成三部分方案实施:学校采用了欣欣的方案,在完成第一步△ABC区域的分隔后,发现仅剩6米篱笆材料.若要在第二步分隔中恰好用完6米材料,欣欣在图2中以AB所在直线为x轴,OP所在直线为y轴建立平面直角坐标系.请按照她的方法解决问题:(1)在图2中画出坐标系,并求抛物线的函数表达式;(2)求6米材料恰好用完时DE与CF的长;(3)种植区域分隔完成后,欣欣又想用灯带对该花坛进行装饰,计划将灯带围成一个矩形.她尝试借助图2设计矩形四个顶点的位置,另外两个顶点分别在线段AC,BC上.直接写出符合设计要求的矩形周长的最大值.【解答】解:(1)建立如图所示的平面

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论