版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
八年级数学下册四边形综合测试题(一)
(时间45分钟,共100分)
姓名:班级:得分:
一、选择题(每题5分,共30分)
1、十二边形的内角和为()
A.1080°B.13600C、1620°D、1800°
2、能判定四边形ABCD为平行四边形的题设是().
(A)AB/7CD,AD=BC;(B)ZA=ZB,ZC=ZD;
(B)(C)AB=CD,AD=BC;(D)AB=AD,CB=CD
3、下列图案中既是轴对称图形又是中心对称图形的是(
(A)
4、菱形ABCD的对角线长分别为6cm和8cm,则菱形的面积为(
A.12,B.24C.36D.48
5.下列说法不正确的是()
(A)对角线相等且互相平分的四边形是矩形;(B)对角线互相垂直平分的四边形是菱形;
(C)对角线垂直的菱形是正方形;(D)底边上的两角相等的梯形是等腰梯形
6、如图1,在平行四边形A6CO中,CELAB,E为垂足.如
果NA=125°,则NBCE=()
A.55°B.35°C.25°D.30°
二、填空题(每题5分,共30分)
7、顺次连结任意四边形各边中点所得到的四边形一定是
8、如图2,矩形A6CD的对角线AC和
8。相交于点。,过点。的直线分别交
AD和BC于点E、F,AB=2,BC=3,
则图中阴影部分的面积为.
尸图2
9、如图3,若UABCD与UEBCF关于BC
所在直线对称,NABE=90°,则/
F=°
10、如^4,把一张矩形纸片A8C7)沿EE
折叠后,点C,。分别落在C',的位置
上,EC'交AO于点G.则4EFG形状为
11、如图5,在梯形ABCD中,
AD//BC
NB=4°,NC室9°,A©1,BD=4
则AB=________
12.如图6,AC是正方形ABCD的对角线,
AE平分/BAC,EF±AC交AC于点F,若BE=2,
则CF长为
三、解答题(每题10分,共40分)
13、(10分)已知:如图7,E、F是平行四边行ABCD的对角线AC上的两点,AE=CF»
求证:ZCDF=ZABE
14、(10分)如图8,把正方形A8CO绕着点A,按顺时针方向旋转得到正方形AE尸G,
边FG与BC交于点、H.求证:HC=HF.DC
G
图8
E
15、(10分)已知:如图9,在△ABC中,AB=AC,ADLBC,垂足为点。,AN是△48
外角/C4A/的平分线,CELAN,垂足为点E,猜想四边形4OCE的形状,并给予证明.
N
图9
16、(10分)如图10,在梯形纸片ABCD中,AD//BC,AD>CD,
将纸片沿过点D的直线折叠,使点C落在AD上的点C处,折
痕DE交BC于点E,连结CE.
求证:四边形CDCE是菱形.
“拓展创新”时间30分钟,共50分,
・、选择及填空题(每题5分,共10分)
1、如图11,在菱形ABC。中,NBAD=
80°,4B的垂直平分线交对角线4c于
点E,交AB丁点凡尸为垂足,连接OE,
则ZCDE=度
2.如图12,四边形48co是矩形,F是AO上一点,E是C8延长线上一点,且四边形
AECF是等腰梯形.下列结论中不•定正确
的是().
(A)AE=FC(B)AD=BC
(C)ZAEB=ZCFD(D)BE=AF
二、填空题(每题5分,共10分)
3、如图13,已知:平行四边形ABCD中,
NBCD的平分线CE交边4。于E,
N/1BC的平分线8G交CE于F,交
AD于G.若AB=4cm,AD=6cm,贝lj
EG=cm.
4、将矩形纸片4BCO按如图14所示的方式折叠,得到菱形4ECF.若48=9,则AC的
长为_________
三、解答题(每题15分,共30分)
5、一次数学活动课上,老师留下了这样一道题“任画一个AABC,以BC的中点O为对
称中心,作4ABC的中心对称图形,问^ABC与它的中心对称图形拼成了一个什么形状
的特殊四边形?并说明理由
于是大家讨论开了,小亮说:“拼成的是平行四边形”;小华说:“拼成的是矩形”;
小强说:“拼成的是菱形”;小红说:“拼成的是正方形”;其他同学也说出了自己的
看法……你赞同他们中的谁的观点?为什么?若都不赞同,请说出你的观点(画出图形),
并说明理由
6,如图15-1,已知点P是矩形ABCD内一点,PA、PB、PC、PD把矩形分割成四个三
角形,小东对该图形进行了研究。为了探究的需要,小东过点P作PE1AD交BC于F,
通过一番研究之后得出两条重要结论:(1)ACB=a.乂D3ABD,
毋曲
(2)P223cp22.
1)请你写出小东探究的过程.
2)当P在矩形外时,如图15-2,上述两个结论是否仍成立?若成立,请说明理由;
若不成立,请写出你猜想的结论(不必证明)
《“四边形”综合测试题(一)》参考答案
基础巩固
一、选择题
1,D2、C3、A4、B5、C.6、B
二、填空题
7、平行四边形8、3.9、45°10、等腰三角形11、3收12.2
三、解答题
13、证明:⑴:ABCD是平行四边形,.,.DC=AB,DC〃AB,
AZDCF=ZBAE,:AE=CF,AAADF^ACBE,ZCDF=ZABE
14、如图8,把正方形A6CO绕着点A,按顺时针方向旋转得到正方形AEFG,边FG与
BC交于点H.求证:HC=HF.
解:证明:连结A",•.,四边形ABC。,AEFG都是正方形.
NB=NG=90°,AG=A6,BC=GF,又AH=AH.
.•.Rt△取困RtABH(HL),:.HG=HB,.,.HC=HF.
15、解:猜想四边形4OCE是矩形。
证明:在△ABC中,AB=AC,ADLBC.:.ZBAD=ZDAC.
AN是△A8C夕卜角乙CAM的平分线,/.
ZMAE=ZCAE.:.ZDA£=Z£)AC+ZCAE=lx180°=90°.又
2
AD1BC,CE1AN,:.NAOC=NCEA=90。,四边形AOCE
为矩形.
16、证明:根据题意可知ACSACD
则CD=C'D,4C'DE=4CDECE=C'E
VAD//BCAZC,DE=ZCED,AZCDE=ZCED;.CD=CE
.,.CD=C'D=C'E=CE四边形CDC'E为菱形
“拓展创新”,
二、选择题
1、60°2、D
三、填空题
3、2cm4、65/3
三、解答题
5、解:不赞同他们的观点,因为AABC形状不确定,所以应分情况讨论.
(1)若AABC中,A庠A(且N6A/史十寸,如图1、图2.4ABC与它的中心对称
图形拼成了一个平行四边形.理由:与C、A与D关于O对称,•••OA=OD,OB=OC,
,四边形ABDC是平行四边形.
(2)若aABC中,AB=AtaZBA=第时,如图3、图4.ZiABC与它的中心对称
图形拼成一个菱形.理由::B与C、A与D关于O对称,,OA=OD,OB=OC,:A星A
...四边形ABDC是菱形.
B
(3)若AABC中,A摩A(且ZBA=T鼠时,如图5,4ABC与它的中心对称图形
拼成一个矩形.理由:VB与C、A与D关于0对称,OA=OD,OB=OC,:
ABtACZB.•.四边形ABDC是矩形.
(4)若AABC中,ARA(且ZB4=更1c(时,如图6,AABC与它的中心对称图形
拼成一个正方形.理由::B与C、A与D关于O对称,...OA=OD,OB=OC,:A5=A(,
ZB4=纪七.•.四边形ABDC是正方形..
6,1)证明:(1),矩形ABCDW,PE±AD,四边形ABFE和四边形CDEF都是矩
n1
4鼠S
=尸
--矩
形,p^04D,,p方S&CP亍/S矩册B,>••
s^/2
+2ACBD9ASD°
(2)•.•矩形ABCD中,PE±AD,二由勾股定理,得
P2=A2+P%p2岸P24F七p22€P-BP2Hp2冉。I,
:.P2+P2=A2A)rP2ap2B-F2EP2mp2GB2mp2Hp2R
.四边形ABFE和四边形CDEF都是矩形,;.A=S:,LF=CE,:.
P2钟2£尸2曲2
2).当P在矩形外时,结论(1)不成立;应为结论SM^S.e?Sm-pS^
结论(2)仍然成立.
理由:同1)中证明(2).
2013中考数学压轴题
安徽22.如图1,在△ABC中,D、E、尸分别为三边的中点,G点在边上,/XBDG
与四边形ACDG的周长相等,设AC=b,AB=c.
(1)求线段BG的长;(2)求证:OG平分/EOF;
(3)连接CG,如图2,若ABOG与△OFG相似,求证:BGLCG.
解(1);£>、(7、尸分别是448。三边中点
又•:ABDG与四边形ACDG
BD+DG+BG=AC+CD+DG+AG
:.BG=AC+AG":BG=AB-AG:.BG=
,、、T“r>b+ch+ccb
(2)证明:BG=-------,FG=BG-BF=--------
2222
,.FG=DF,:.ZFDG=ZFGD又\:DEMNB
:.ZEDG=ZFGDNFDG=NEDG二。6平分/EOF
(3)在△DFG中,ZFDG=ZFGD,丛DFG是等腰三角形,
■:4BDG与△QFG相似,「.△BOG是等腰三角形,,NB=ZBGD,:.BD=DG,
则CO=BO=OG,,8、CG、三点共圆,BGC=90°,:.BGLCG
23.如图,排球运动员站在点。处练习发球,将球从。点正上方2m的A处发出,把球看
成点,其运行的高度y(〃?)与运行的水平距离x(〃?)满足关系式尸i(x—6)2+瓦已知球网与0
点的水平距离为9机,高度为2.43机,球场的边界距。点的水平距离为18,“。
(I)当6=2.6时,求y与x的关系式(不要求写出自变量x的取值范围)
(2)当〃=2.6时,球能否越过球网?球会不会出界?请说明理由;
(3)若球一定能越过球网,又不出边界,求人的取值范围。
23解(1)把)=0,了=2,及〃=2.6代入至1」),=。(犬-6)2+〃即2="(0—6)?+2.6,/.a=——
60
y=——(x-6)2+2.6
(2)当h=2.6时,尸—--(x-6)2+2.6x=9时,y=---(9-6)2+2.6=2.45>2.43
©®
球能越过网
x=18时,y=---(18-6)2+2.6=0.2>0球会过界
©
边界
----------A
18x
2-h
(3)x=0,y=2,代入至!]y=d(x—6)2+A得a=----;
36
2-h2+3h2-h
x=9时,y=----(9—6)2+/Z=---:—>2.43①x=18B寸,v=-----(18—6)2+h8—3/?
36435
Q
>0②由①②得后一
3
[匕京8.小翔在如图1所示的场地上匀速跑步,他从点A出发,沿箭头所示方向经过点
8跑到点C,共用时30秒.他的教练选择了一个固定的位置观察小翔的跑步过程.设小
翔跑步的时间为f(单位:秒),他与教练的距离为y(单位:米),表示y与r的函数关
系的图象大致如图2所示,则这个固定位置可能是图1中的
D.点。
d12345678910II1213x
【解析】D
12.在平面直角坐标系X。),中,我们把横纵坐标都是整数的点叫做整点.已知点
4(0,4),点8是x轴正半轴上的整点,记4408内部(不包括边界)的整点个数为
机.当机=3时点8的横坐标的所有可能值是;当点B的横坐标为4〃(〃
为正整数)时,加=(用含”的代数式表示.)
【解析】3或4;6”-3
北京24.在△ABC中,BA=BC,ZBAC=a,M是AC的中点,P是线段上的动
点,将线段PA绕点P顺时针旋转2a得到线段PQo
(1)若a=60。且点P与点M重合(如图1),缰CQ的延长线交射线BM于点D,
请补全图形,并写出NCD8的度数;
(2)在图2中,点尸不与点8,M重合,线段C。的延长线与射线交于点。,
猜想NCD8的大小(用含a的代数式表示),并加以证明;
(3)对于适当大小的a,当点尸在线段上运动到某一位置(不与点2,M重
合)时,能使得线段CQ的延长线与射线BM交于点D,且P。=。。,请直接
写出a的范围。
【解析】
图1
NCDB=3()。
⑵连接PC,AO,
乙PAD=ZPCD
又PQ=PA:.PQ=PC,ZADC=2ZCDB,APQC=ZPCD=ZPAD
:.ZPAD+ZPQD=Z.PQC+ZPQD=180°
,AAPQ+/ADC=360°-(/PAD+PQD)=180°
ZADC=1800-ZAPQ=180°-2a/.2ZCDB=180°-2a
ZCDB=900-a
(3)NCDB=90°-a,且PQ=QD
:.4PAD=NPCQ=ZPQC=2NCDB=1800-2a
•.•点P不与点B,M重合AABAD>ZPAD>ZMADA2a>180°-2a>a
,45°<a<60°
25.在平面直角坐标系xOy中,对于任意两点4(再,y)与乙(乙,为)的“非常距离”,给出
如下定义:
若IX,-人以%-丫2I,则点吊与点鸟的“非常距离”为II;
・
若I±-X?1<1yl-y2\,则点[与点£的“非常距离”为I%-丫21
例如:点£(1,2),点舄(3,5),因为11-31<12-51,所以点勺与点鸟的“非常距离”
为12-51=3,也就是图1中线段6。与线段优。长度的较大值(点。为垂直于),轴的
直线耳。与垂直于x轴的直线鸟。的交点)。
(1)已知点A(-;,0),8为y轴上的一个动点,
①若点A与点B的“非常距离''为2,写出一个满足条件的点B的坐标;②直接写出点4与
点8的“非常距离”的最小值;
(2)已知C是直线y=±x+3上的一个动点,
4
①如图2,点。的坐标是(0,1),求点C与点。的“非常距离”的最小值及相
应的点C的坐标:
②如图3,E是以原点。为圆心,1为半径的圆上的一个动点,求点C与点E的
“非常距离”
的最小值及相应的点E和点C的坐标。
图2图3
⑵①设C坐标(%,|x0+3)...当3-...距离为号此时
-x=jx()+2止匕时x
0077
815
C一,—
77
8
--x0=-x0+3--Xc
@Trt5°4050=",•rr?
最小值10
重庆10.已知二次函数),=,+汝+。(〃刈)的图象如图所示对称轴为.下列结论
中,正确的是()
A.abc>0B.a+b=OC.2b+c>0D.4a+c<2b
解答:解:A、:开口向上,.与y轴交与负半轴,...cVO,
•.•对称轴在y轴左侧,二-&VO,二6>0,温<0,故本选项错误:
2a
B、:对称轴:x=--^-=-^,:.a=b,故本选项错误;C、当x=l时,a+b+c=2b+c<0,故
2a2
本选项错误;
。、;对称轴为X=-1,与无轴的一个交点的取值范围为X|>1,二与x轴的另一个交点的
2
取值范围为X2<-2,
...当x=-2时,4a-2b+c<0,即4a+c<2b,故本选项正确.故选。.
16.甲、乙两人玩纸牌游戏,从足够数量的纸牌中取牌.规定每人最多两种取法,甲每次
取4张或(4-k)张,乙每次取6张或(67)张(女是常数,0<k<4).经统计,甲共
取了15次,乙共取了17次,并且乙至少取了一次6张牌,最终两人所取牌的总张数恰好
相等,那么纸牌最少有108张.
分析:设甲a次取(4-A)张,乙b次取(67)张,则甲(15-«)次取4张,乙(17
-b)次取6张,从而根据两人所取牌的总张数恰好相等,得出。之间的关系,再有取
牌总数的表达式,讨论即可得出答案.
解答:解:设甲〃次取(4-i1)张,乙b次取(6-k)张,则甲(15-a)次取4张,
乙(17-/J)次取6张,
则甲取牌(60-ka)张,乙取牌(102-妨)张,则总共取牌:N=a(4-k)+4(15-a)
+b(6-&)+6(17-b)=-*(a+b)+162,
从而要使牌最少,则可使N最小,因为左为正数,函数为减函数,则可使(a+b)尽可能
的大,由题意得,a<15,后16,
又最终两人所取牌的总张数恰好相等,故k*-a)=42,而0VY4,b-a为整数,
则由整除的知识,可得k可为1,2,3,
①当k=l时,b-a-42,因为aW15,b<\i),所以这种情况舍去;
②当k=2时,b-a=21,因为aW15,把16,所以这种情况舍去;
③当上3时,b-a=\4,此时可以符合题意,
综上可得:要保证好15,区16,匕-a=14,(a+b)值最大,则可使6=16,。=2;珠15,。=1;
b=14,<7=0;
当岳46,a=2时,a+b最大,a+b=18,继而可确定k=3,(a+b)=18,所以N=-3x18+162=108
张.
故答案为:108.
重庆企业的污水处理有两种方式,一种是输送到污水厂进行集中处理,另一种是通过
企业的自身设备进行处理.某企业去年每月的污水量均为12000吨,由于污水厂处于调试
阶段,污水处理能力有限,该企业投资自建设备处理污水,两种处理方式同时进行.1至
6月,该企业向污水厂输送的污水量力(吨)与月份x(l<r<6,且x取整数)之间满足的
函数关系如下表:
月份X(月)123456
输送的污水量力(吨)1200060004000300024002000
7至12月,该企业自身处理的污水量”(吨)与月份x(7<r<12,且x取整数)之间满足
二次函数关系式为力=。2后c(awO).其图象如图所示.1至6月,污水厂处理每吨污
水的费用:z,(元)与月份x之间满足函数关系式:该企业自身处理每吨污水
2
31,
的费用:(元)与月份x之间满足函数关系式:d=-x--X2;7至12月,污水厂
-412
处理每吨污水的费用均为2元,该企业自身处理每吨污水的费用均为1.5元.
(1)请观察题中的表格和图象,用所学过的一次函数、反比例函数或二次函数的有关知
识,分别直接写出口,为与x之间的函数关系式;
(2)请你求出该企业去年哪个月用于污水处理的费用W(元)最多,并求出这个最多费
用;
(3)今年以来,由于自建污水处理设备的全面运行,该企业决定扩大产能并将所有污水
全部自身处理,估计扩大产能后今年每月的污水量都将在去年每月的基础上增加“%,同
时每吨污水处理的费用将在去年12月份的基础上增加(a-30)%,为鼓励节能降耗,减
轻企业负担,财政对企业处理污水的费用进行50%的补助.若该企业每月的污水处理费用
为18000元,请计算出a的整数值.(参考数据:V231~15.2,V419~20.5,V809-28.4)
解答:解(1)根据表格中数据可以得出xy=定值,则为与x之间的函数关系为反比例函
数关系:yi=h,将(1,12000)代入得:k=1x12000=12000,故、尸丝咽(1<X<6,且x
xx
取整数);
根据图象可以得出:图象过(7,10049),(12,10144)点,代入y2=ax2+c(a#0)得:
fl0049=49a+c
i10144=144a+c'
解得:,故丫2=:+10000(73勺2,且x取整数);
lc=10000
120QQ
(2)当0W6,且x取整数时:W=yixi+(12000-yi)»X2-dv+(12000-
x2x
•昌,X2),
412
=-10007+10000A--3000,':a=-1000<0,x=-至=5,但6,.•.当x=5时,叩最大=22000
2a
(元),
当7人12时,且x取整数时,W=2x(12000-y})+1.5y2=2x(12000-7-10000)+1.5
(x2+10000),=-1X2+1900,
2
•.•0=-工<0,x=-_L=O,当7勺饪12时,W随x的增大而减小,...当x=7时,+地大=18975.5
22a
(元),V22000>18975.5,
去年5月用于污水处理的费用最多,最多费用是22000元;
(3)由题意得:12000(1+a%)xl.5x[l+(a-30)%]x(1-50%)=18000,设f=a%,整
理得:10产+17「13=0,
17±
解得:t-V809t•.♦J§5^28.4,.•工户0.57,々<-2.27(舍去),.\a~57,
20
答:〃的值是57.
26.已知:如图,在直角梯形A8C£>中,AD//BC,ZB=90°,AD=2,BC=6,AB=3>.E为
BC边上一点,以BE为边作正方形8EFG,使正方形8EFG和梯形ABC。在BC的同侧.
(1)当正方形的顶点尸恰好落在对角线AC上时,求BE的长;
(2)将(1)问中的正方形BEFG沿BC向右平移,记平移中的正方形BEFC为正方形B'EFG,
当点E与点C重合时停止平移.设平移的距离为/,正方形BEFG的边£尸与AC交于点
M,连接BY),B'M,DM,是否存在这样的r,使是直角三角形?若存在,求出,
的值:若不存在,请说明理由:
(3)在(2)问的平移过程中,设正方形9EFG与AAOC重建部分的面积为S,请直接写
出S与r之间的函数关系式以及自变量,的取值范围.
解答:解(1)如图①,设正方形BEFG的边长为x,贝IJ8E=FG=8G=x,
:A8=3,BC=6,:.AG=AB-BG=3-x,
VGF//BE,:./\AGF^/\ABC,旭旦,即三W?,解得:x=2,即8E=2;
ABBC36
(2)存在满足条件的f,
理由:如图②,过点。作Q4_LBC于"则B〃=A£)=2,DH=AB=3,
由题意得:BB'=HE=t,HB'=\t-21,£C=4-t,
在RfZXB'ME中,B'M2=ME2+B'E1=21+(2-工力2=^r-2f+8,
24
•:EF//AB,.♦.△MECSAABC,.X里,即座\:.ME=2-^t,
ABBC362
在RtADHB,中,B'D2=DH2+B'H2=32+(/-2)2=t2-4r+13,过点M作于N,
则MN=HE=t,NH=ME=2-h,:.DN=DH-NH=3-(2-A/)」/+],在Rt丛DMN中,
222
DM2=DN2+MN2=^t2+t+1,
4
即也产+竹仁(Ar-2r+8)+(』-4f+13),解
(I)若/£)8'M=90°,则DM2=B'M2+B'£>2,
44
得:仁义,
7
(II)若/B'WD=90°,则B'D2^B'M2+DM2,即r-4f+13=(―r-2f+8)+(—?+/+!),
44
解得:a=-3+417,?2=_3-V17(舍去),•*-t=-3+VT7;
2
(III)若NB,DM=90。,则8'〃2=8'。2+。/\即:Ar-2t+8=(?-4r+13)+(^r+z+i),
44
此方程无解,
综上所述,当仁干或-3+JF时,△B75M是直角三角形;
(3)①如图③,当尸在CO上时,EF:DH=CE:CH,即2:3=CE:4,.\CE=^,
3
t=BB'=BC-B'E-EC=6-2-':ME=2-^t,:.FM=lt,当g小时,
33223
S=S△FMN—1xrx°r_1「,
224
②当G在ACtf^,f=2,:EK=EC”a〃NCCB=EQ以/(4-r)=3-af,;.FK=2-EK-^
CH444
■:NL=^AD=^,:.FL=t-9,.I单〈二2时,S=S&FMN-S^FKL=^r-1(r-(^r-1)=
33334234
③如图⑤,当G在CD上时,B'C:CH=B'G:DH,即8C:4=2:3,解得:B'C=^,
3
:.EC=4t=B'C-2=^,•••B'N=^B'C=1(6-Z)=3-1/,GN=GB'-B'N=^t-1,
332222
*'•当2Vzs学1寸,S=S梯形GNMF-S△尸KL="^X2X(a/-1号力一兴一家鲁一”一表2,
_—5t
3
④如图⑥,当也〈华4时,":B'L=^B'C=^(6-r),EK^EC=^-(4-z),B'N=^B'C=^(6
3444422
-/)EM」EC」(4-r),
22
S=S梯形MNLK=S悌形ZfEKL-S梯形8'£MN=综上所述:
22
当/小时,5=工/,当g<二2时:5=-1*+「2;当2c标刃时,S=--r+2t-当M
一一343833833
〈也4时,S=3.
图①图②
图③图④
图⑤图⑥
福建福州10.如图,过点C(l,2)分别作X轴、y轴的平行线,交直线y=-x+6于A、
B两点,若反比例函数y=kx(x>0)的图像与△ABC有公共点,则上的取值范围是
A.2<k<9B.2<k<SC.2<k<5D.5<k<S
解答:解::点C(l,2),BC〃y轴,AC〃龙轴,,当x=l时,,y=-l+6=5,
当y=2时,-x+6=2,解得x=4,点A、8的坐标分别为A(4,2),8(1,
5),
根据反比例函数系数的几何意义,当反比例函数与点C相交时,*=1x2=2最
小,
设与线段48相交于点(x,—x+6)时出值最大,则左=x(—x+6)=—』+6x=一
(X-3)2+9,
Vl^-<4,当x=3时,k值最大,此时交点坐标为(3,3),因此,k的取值
范围是2必W9.
故选A.
15.如图,已知△ABC,AB=AC=\,NA=36。,/A8c的平分线B。交AC于点O,则
力。的长是,caM的值是.(结果保留根号)
解答::△ABC,AB=AC=1,ZA=36°,,NABC=/AC8=18(T—NA2=72。.
:B£>是NABC的平分线,;.NA8O=NOBC=12NA8C=36。.NA=NQBC=36。,
又:NC=NC,Z./\ABC^^\BDC,:,ACBC=BCCD,
设4O=x,贝ij8D=BC=x.贝ijlx=xl-x,解得:x=5)+12(舍去)或5)-12.故x=5)
-12.
如右图,过点。作OEJ_AB于点E,:
为AB中点,BPAE=12AB=i2.在K〃\ABD中,cosA=AEAD=12\r(52=5)+14.
故答案是:5)-12:5)+14.
福建福州21.如图①,在放ZXABC中,ZC=90°,AC=6,BC=8,匈点、P从点A开
妁沿边4c向点C以每秒1个单位长度的速度运动,动点。从点C开始沿边CB向点B以
每秒2个单位长度的速度运动,过点?作「。〃8(7,交AB于点D,连接PQ.点尸、。分
别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为
1秒(仑0).
(1)直接用含f的代数式分别表示:QB=,PD=.
(2)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说
明理由.并探究如何改变点Q的速度(匀速运动),使四边形PDBQ在某一时刻为
菱形,求点。的速度;
(3)如图②,在整个运动过程中,求出线段P。5点M所经过的路径长.
解答:解:(l)0B=8-2f,PD=43t.
Q)不存在.
在中,ZC=90°,AC=6,8c=8,AB=10.
VPD//BC,:./\APD^/\ACB,二ADAB=APAC,即:AD10=t6,AAD
=53t,BD=AB~AD=\0~53t.
':BQ//DP,:.当BQ=DP时,四边形PDBQ是平行四边形,即8—2[=43,,
解得:f=125.
当f=125时,PO=43xl25=165,80=10—53x125=6,,DP,BD,:.nPDBQ
不能为菱形.
设点。的速度为每秒v个单位长度,则8。=8—必PO=43t,8。=10—53f.
要使四边形PO8Q为菱形,贝IJPO=8O=8Q,
当产。=8。时,即43r=10—53/,解得:f=103.
当尸。=8。时,1=103时,即43xl03=8—103v,解得:v=1615.
(3)解法一:如图2,以C为原点,以AC所在直线为x轴,建立平面直角坐标系.
依题意,可知0SW4,当f=0时,点切的坐标为(3,0);
当f=4时,,点的坐标为(1,4).设直线的解析式为y=H+b,
3k+b=0k+b=4),解得:k=-2b=6).A直线“幽2的解析式为丫=一
2x+6.
•.•点2(0,2r),尸(6—f,0),二在运动过程中,线段尸。中点的坐标为
(6~t2,r).
把尤=6—12,代入y=-2r+6,得y=-2x6—t2+6=r.点M3在直线
MIM2±.
〃2N_LX
过点“2作轴于点N,则M:N=4,MiN=2.M,M2=25.
•••线段PQ中点M所经过的路径长为25单位长度.
解法二:如图3,设E是AC的中点,连接ME.
当f=4时,点。与点B重合,运动停止.设此时P。的中点为尸,连接EF.
过点“作MV_LAC,垂足为N,则MN〃BC.A/\PMN^/\PDC.
:.MNQC=PNPC=PMPQ,B[J:MN2t=PN6—1=12.;.MN=t,PN=3-12t,:.CN
=PC-PN=(6-f)-(3—12r)=3—12r.
EN=CE-CN=3-(3—12r)=⑵.S”/MEN=MNEN=2.
的值不变,,点M在直线E尸上.
过尸作F〃_LAC,垂足为“.则E”=2,FH=4.:.EF=25.
,:当,=0时,点M与点E重合;当1=4时,点M与点尸重合,;.线段PQ中点/所
经过的路径长为25单位长度.
22.如图①,已知抛物线y=af+加S知)经过A。,0)、8(4,4)两点.
(1)求抛物线的解析式;
(2)将直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个公共点D,
求机的值及点。的坐标;
(3)如图②,若点N在抛物线匕且NNBO=NAB。,则在(2)的条件下,求出所有满
足△POQs^NOB的点尸的坐标(点尸、0、。分别与点N、0、8对应).
解:(1):抛物线y=o?+皿帕))经过点—(3,0)、8(4,4).
9a+3b=016a+4b=4),解得:a=lb=3).抛物线的解析式是y=
X2—3X.
(2)设直线OB的解析式为y=Ex,由点8(4,4),得:4=4"解得自=1.二直线
OB的解析式为y=x.
直线向下平移机个单位长度后的解析式为:y=x-m.
,/点。在抛物线y=f—3x上.;.可设Q(x,X2-3X).又点。在直线y=x
~m上,
X2~3X—x~m,即/一4x+m=0.
,/抛物线与直线只有一个公共点,..•Z\=16—4〃?=0,解得:%=4.
此时修=孙=2,y=j?—3x=—2,,。点坐标为(2,—2).
(3)V直线OB的解析式为y=x,且A(3,0),...点A关于直线。8的对称点4
的坐标是(0,3).
设直线A3的解析式为y=Bx+3,过点8(4,4),4&+3=4,解得:幻=
14.
,直线A3的解析式是y=14x+3.
■:/NBO=NABO,:.点N在直线A5上,设点N(〃,14〃+3),又点N
在抛物线y=?-3x上,
14〃+3=〃2—3”,
解得:«i=-34,“2=4(不合题意,会去),,点N的坐标为(-34,4516).
方法一:如图1,将△N08沿x轴翻折,得到△NQ团,则州(一34,—4516),
Bi(4.-4),
二0、D、Bi都在直线丫=一》上.
V/XP\OD^/XNOB,:.丛P\ODS/\N\OB\,OP1ON1=ODOB1=12,
点Pi的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 1.1 国家是什么(导学案) 高二政治 (统编版选择性必修1)
- 印刷机械行业智能化发展的市场机遇分析考核试卷
- 2025年销售佣金合同范本与业绩激励方案3篇
- 2025版木工行业培训与认证服务合同范本4篇
- 2025年商业委托销售协议
- 2025年合法住房公租房协议
- 二零二五年度驾校品牌推广与市场拓展合作合同2篇
- 2025年度个人二手车转让及二手车增值服务合同3篇
- 二零二五年度林业苗木繁育基地承包合同4篇
- 二零二五年度集体产权房屋买卖合同样本(含房屋产权调查及核实要求)
- 《医院财务分析报告》课件
- 2025老年公寓合同管理制度
- 2024-2025学年人教版数学六年级上册 期末综合卷(含答案)
- 2024中国汽车后市场年度发展报告
- 感染性腹泻的护理查房
- 天津市部分区2023-2024学年高二上学期期末考试 物理 含解析
- 《人工智能基础》全套英语教学课件(共7章)
- 废铁收购厂管理制度
- 物品赔偿单范本
- 《水和废水监测》课件
- 沪教版六年级数学下册课件【全册】
评论
0/150
提交评论