版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共6页河北省武安市2024-2025学年数学九上开学学业水平测试试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,等边与正方形重叠,其中,两点分别在,上,且,若,,则的面积为()A.1 B.C.2 D.2、(4分)甲、乙、丙三位选手各10次射击成绩的平均数和方差统计如表:选手甲乙丙平均数9.39.39.3方差0.026a0.032已知乙是成绩最稳定的选手,且乙的10次射击成绩不都一样,则a的值可能是()A.0 B.0.020 C.0.030 D.0.0353、(4分)武汉某中学体育特长生的年龄,经统计有12、13、14、15四种年龄,统计结果如图.根据图中信息可以判断该批队员的年龄的众数和中位数为()A.8和6 B.15和14 C.8和14 D.15和13.54、(4分)某公司10名职工的5月份工资统计如下,该公司10名职工5月份工资的众数和中位数分别是()工资(元)2000220024002600人数(人)1342A.2400元、2400元B.2400元、2300元C.2200元、2200元D.2200元、2300元5、(4分)如图,平面直角坐标系中,在边长为1的正方形的边上有—动点沿正方形运动一周,则的纵坐标与点走过的路程之间的函数关系用图象表示大致是()A. B. C. D.6、(4分)如图,在梯形ABCD中,AD//BC,E为BC上一点,DE//AB,AD的长为2,BC的长为4,则CE的长为().A.1 B.2 C.3 D.47、(4分)多项式m2﹣4与多项式m2﹣4m+4的公因式是()A.m﹣2 B.m+2 C.m+4 D.m﹣48、(4分)如图,在△ABC中,AB=5,BC=6,AC=7,点D,E,F分别是△ABC三边的中点,则△DEF的周长为()A.12 B.11 C.10 D.9二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)满足a2+b2=c2的三个正整数,称为勾股数.写出你比较熟悉的两组勾股数:①_____;②_____.10、(4分)请写出一个图象经过点的一次函数的表达式:______.11、(4分)A、B、C三瓶不同浓度的酒精,A瓶内有酒精2kg,浓度x%,B瓶有酒精3kg,浓度y%,C瓶有酒精5kg,浓度z%,从A瓶中倒出10%,B瓶中倒出20%,C瓶中倒出24%,混合后测得浓度33.5%,将混合后的溶液倒回瓶中,使它们恢复原来的质量,再从A瓶倒出30%,B瓶倒出30%,C瓶倒出30%,混合后测得浓度为31.5%,测量发现20≤x≤30,20≤y≤30,35≤z≤45,且x、y、z均为整数,则把起初A、B两瓶酒精全部混合后的浓度为______.12、(4分)若关于有增根,则_____;13、(4分)若方程组的解是,则直线y=﹣2x+b与直线y=x﹣a的交点坐标是_____.三、解答题(本大题共5个小题,共48分)14、(12分)如图,在矩形中,点,分别在边,上,且.(1)求证:四边形是平行四边形.(2)若四边形是菱形,,,求菱形的周长.15、(8分)某学校要对如图所示的一块地进行绿化,已知,,,,,求这块地的面积.16、(8分)已知:如图,在Rt△ABC中,∠C=90°,AB=5cm,AC=3cm,动点P从点B出发沿射线BC以1cm/s的速度移动,设运动的时间为t秒.(1)求BC边的长;(2)当△ABP为直角三角形时,求t的值;(3)当△ABP为等腰三角形时,求t的值17、(10分)(1);(2)÷18、(10分)关于x的方程:-=1.(1)当a=3时,求这个方程的解;(2)若这个方程有增根,求a的值.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,将八个边长为1的小正方形摆放在平面直角坐标系中,若过原点的直线将图形分成面积相等的两部分,则直线的函数关系式为______________.20、(4分)关于x的分式方程有增根,则a=_____.21、(4分)如图,平行四边形ABCD内的一点E到边AD,AB,BC的距离相等,则∠AEB的度数等于____.22、(4分)已知一次函数y=(-1-a2)x+1的图象过点(x1,2),(x2-1),则x1与x2的大小关系为______.23、(4分)用换元法解方程时,如果设,那么得到关于的整式方程为_____.二、解答题(本大题共3个小题,共30分)24、(8分)解决问题.学校要购买A,B两种型号的足球,按体育器材门市足球销售价格(单价)计算:若买2个A型足球和3个B型足球,则要花费370元,若买3个A型足球和1个B型足球,则要花费240元.(1)求A,B两种型号足球的销售价格各是多少元/个?(2)学校拟向该体育器材门市购买A,B两种型号的足球共20个,且费用不低于1300元,不超过1500元,则有哪几种购球方案?25、(10分)如图,在平面直角坐标系中,O为坐标原点,P、Q是反比例函数(x>0)图象上的两点,过点P、Q分别作直线且与x、y轴分别交于点A、B和点M、N.已知点P为线段AB的中点.(1)求△AOB的面积(结果用含a的代数式表示);(2)当点Q为线段MN的中点时,小菲同学连结AN,MB后发现此时直线AN与直线MB平行,问小菲同学发现的结论正确吗?为什么?26、(12分)某个体户购进一批时令水果,20天销售完毕,他将本次的销售情况进行了跟踪记录,根据所记录的数据绘制如图所示的函数图象,其中日销售量y(千克)与销售时间x(天)之间的函数关系如图甲,销售单价P(元/千克)与销售时间x(天)之间的关系如图乙.(1)求y与x之间的函数关系式.(2)分别求第10天和第15天的销售金额.(3)若日销售量不低于24千克的时间段为“最佳销售期”,则此次销售过程中“最佳销售期”共有多少天?在此期间销售单价最高为多少元?
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】
过F作FQ⊥BC于Q,根据等边三角形的性质和判定和正方形的性质求出BE=2,∠BED=60°,∠DEF=90°,EF=2,求出∠FEQ,求出CE和FQ,即可求出答案.【详解】过F作FQ⊥BC于Q,则∠FQE=90°.∵△ABC是等边三角形,AB=6,∴BC=AB=6,∠B=60°.∵BD=BE,DE=2,∴△BED是等边三角形,且边长为2,∴BE=DE=2,∠BED=60°,∴CE=BC﹣BE=1.∵四边形DEFG是正方形,DE=2,∴EF=DE=2,∠DEF=90°,∴∠FEC=180°﹣60°﹣90°=30°,∴QFEF=1,∴△EFC的面积为CE•FQ1×1=2.故选C.本题考查了等边三角形的性质和判定、正方形的性质等知识点,能求出CE和FQ的长度是解答此题的关键.2、B【解析】解:∵乙的11次射击成绩不都一样,∴a≠1.∵乙是成绩最稳定的选手,∴乙的方差最小,∴a的值可能是1.121.故选B.3、B【解析】
根据众数和中位数的定义解答即可.【详解】解:15岁的队员最多,是8人,所以众数是15岁,20人中按照年龄从小到大排列,第10、11两人的年龄都是14岁,所以中位数是14岁.故选B.本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.4、A【解析】
众数是在一组数据中,出现次数最多的数据;中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)【详解】这组数据中,出现次数最多的是2400元,故这组数据的众数为2400元.将这组数据重新排序为2000,2200,2200,2200,2400,2400,2400,2400,2600,2600,∴中位数是按从小到大排列后第5,6个数的平均数,为:2400元.故选A.5、D【解析】
根据正方形的边长即可求出AB=BC=CD=DA=1,然后结合图象可知点A的纵坐标为2,线段BC上所有点的纵坐标都为1,线段DA上所有点的纵坐标都为2,再根据点P运动的位置逐一分析,用排除法即可得出结论.【详解】解:∵正方形ABCD的边长为1,∴AB=BC=CD=DA=1由图象可知:点A的纵坐标为2,线段BC上所有点的纵坐标都为1,线段DA上所有点的纵坐标都为2,∴当点P从A到B运动时,即0<S≤1时,点P的纵坐标逐渐减小,故可排除选项A;当点P到点B时,即当S=1时,点P的纵坐标y=1,故可排除选项B;当点P从B到C运动时,即1<S≤2时,点P的纵坐标y恒等于1,故可排除C;当点P从C到D运动时,即2<S≤3时,点P的纵坐标逐渐增大;当点P从D到A运动时,即3<S≤4时,点P的纵坐标y恒等于2,故选D.此题考查的是根据图形上的点的运动,找出对应的图象,掌握横坐标、纵坐标的实际意义和根据点的不同位置逐一分析是解决此题的关键.6、B【解析】
先证明四边形ABED为平行四边形,再利用平行四边形的性质进行计算即可.【详解】∵,,∴四边形ABED为平行四边形,∴AD=BE=1,又∵BC=4,∴CE=BC-BE=4-1=1.故选:B.本题考查平行四边形的判定与性质,需熟记判定定理及性质.7、A【解析】
根据公因式定义,对各选项整理然后即可选出有公因式的项.【详解】解:m2-4=(m+2)(m-2),m2-4与多项式m2故选:A.此题考查的是公因式的定义,找公因式的要点是:(1)公因式的系数是多项式各项系数的最大公约数;(2)字母取各项都含有的相同字母;(3)相同字母的指数取次数最低的.在提公因式时千万别忘了“-1”.8、D【解析】
根据三角形中位线定理分别求出DE、EF、DF,计算即可.【详解】∵点D,E分别AB、BC的中点,∴DE=AC=3.5,同理,DF=BC=3,EF=AB=2.5,∴△DEF的周长=DE+EF+DF=9,故选D.本题考查的是三角形中位线定理,熟练掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、3,4,56,8,10【解析】
根据勾股数的定义即可得出答案.【详解】∵3、4、5是三个正整数,且满足,∴3、4、5是一组勾股数;同理,6、8、10也是一组勾股数.故答案为:①3,4,5;②6,8,10.本题考查了勾股数.解题的关键在于要判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.10、y=2x-1【解析】
可设这个一次函数解析式为:,把代入即可.【详解】设这个一次函数解析式为:,把代入得,这个一次函数解析式为:不唯一.一次函数的解析式有k,b两个未知数当只告诉一个点时,可设k,b中有一个已知数,然后把点的坐标代入即可.11、23%【解析】
根据第一次A、B、C各取出部分混合后的浓度得到一条关于xyz的等式,再算出混合液倒回后A、B、C中后各自的酒精量,然后根据第二次混合再得到一条关于xyz的等式,联立组成方程组,使用x、y表示z,根据x、y、z的取值范围确定其准确整数值即可求解.【详解】解:A瓶倒出10%:2000×10%=200(克),剩余:2000-200=1800(克),
B瓶倒出20%:3000×20%=600(克),剩余:3000-600=2400(克),C瓶倒出24%:5000×24%=1200(克),剩余:5000-1200=3800(克),根据题意得:(200×x%+600×y%+1200×z%)÷(200+600+1200)=33.5%,混合液倒回后A瓶内的酒精量:1800×x%+200×33.5%,混合液倒回后B瓶内的酒精量:2400×y%+600×33.5%,混合液倒回后C瓶内的酒精量:3800×z%+1200×33.5%,再根据题意可得:[(1800×x%+200×33.5%)×30%+(2400×y%+600×33.5%)×30%+(3800×z%+1200×33.5%)×30%]÷(2000×30%+3000×30%+5000×30%)=31.5%,整理组成方程组得:x+3y+6z=3359x+12y+19z=1240解得:z=355-3y7∵20≤x≤30,20≤y≤30,∴2657(约37.85则z=40或代入可得:x=20y=25z=40,或者x=21y=∵x、y、z均为整数,则只有x=20y=25则把起初A、B两瓶酒精混合后的浓度为:2000×20%+3000故答案为:23%.本题考查从题意提取信息列方程组的能力,也考查三元一次方程组得解法,准确得出x、y和z之间的关系式再代入范围求解,舍去不符合题意的解为解题的关键.12、1【解析】
方程两边都乘以最简公分母(x–1),把分式方程化为整式方程,再根据分式方程的增根就是使最简公分母等于0的未知数的值求出x的值,然后代入进行计算即可求出a的值.【详解】解:方程两边都乘(x﹣1),得1-ax+3x=3x﹣3,∵原方程有增根∴最简公分母x﹣1=0,即增根为x=1,把x=1代入整式方程,得a=1.此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.方程的增根不适合原方程,但适合去分母后的整式方程,这是求字母系数的重要思想方法.13、(-1,3)【解析】
直线y=-2x+b可以变成:2x+y=b,直线y=x-a可以变成:x-y=a,∴两直线的交点即为方程组的解,故交点坐标为(-1,3).故答案为(-1,3).三、解答题(本大题共5个小题,共48分)14、(1)见解析;(2)20.【解析】
(1)由矩形的性质得出,,,证出,即可得出四边形是平行四边形.(2)由菱形的性质得出,,设,则,在中,由勾股定理得出方程,解方程即可.【详解】(1)证明:四边形是矩形,,,,,,四边形是平行四边形.(2)四边形是菱形,,,设,则,在中,由勾股定理得:,解得:,,菱形的周长.此题考查了菱形的性质、矩形的性质、平行四边形的判定以及勾股定理.此题难度不大,注意掌握数形结合思想的应用.15、24m2.【解析】
连接AC,先利用勾股定理求出AC,再根据勾股定理的逆定理判定△ABC是直角三角形,
根据△ABC的面积减去△ACD的面积就是所求的面积.【详解】解:连接∵∴在中,根据勾股定理在中,∵是直角三角形∴.本题考查了勾股定理、勾股定理的逆定理的应用,得到△ABC是直角三角形是解题的关键.同时考查了直角三角形的面积公式.16、【解析】试题分析:(1)直接根据勾股定理求出BC的长度;(2)当△ABP为直角三角形时,分两种情况:①当∠APB为直角时,②当∠BAP为直角时,分别求出此时的t值即可;(3)当△ABP为等腰三角形时,分三种情况:①当AB=BP时;②当AB=AP时;③当BP=AP时,分别求出BP的长度,继而可求得t值.试题解析:(1)在Rt△ABC中,BC2=AB2-AC2=52-32=16,∴BC=4(cm);(2)由题意知BP=tcm,①当∠APB为直角时,点P与点C重合,BP=BC=4cm,即t=4;②当∠BAP为直角时,BP=tcm,CP=(t-4)cm,AC=3cm,在Rt△ACP中,AP2=32+(t-4)2,在Rt△BAP中,AB2+AP2=BP2,即:52+[32+(t-4)2]=t2,解得:t=,故当△ABP为直角三角形时,t=4或t=;(3)①当AB=BP时,t=5;②当AB=AP时,BP=2BC=8cm,t=8;③当BP=AP时,AP=BP=tcm,CP=|t-4|cm,AC=3cm,在Rt△ACP中,AP2=AC2+CP2,所以t2=32+(t-4)2,解得:t=,综上所述:当△ABP为等腰三角形时,t=5或t=8或t=.考点:勾股定理17、(1)-45;(2)2+4.【解析】
(1)利用二次根式的乘法运算法则化简求出即可;(2)利用二次根式的除法运算法则化简求出即可.【详解】(1)==-18×=-45;(2)÷=(20-18+4)÷=()÷=2+4.本题考查了二次根式的混合运算,正确化简二次根式是解题的关键.18、(1)x=-2;(2)a=-3.【解析】
(1)将a=3代入,求解-=1的根,验根即可,(2)先求出增根是x=1,将分式化简为ax+1+2=x-1,代入x=1即可求出a的值.【详解】解:(1)当a=3时,原方程为-=1,方程两边同乘x-1,得3x+1+2=x-1,解这个整式方程得x=-2,检验:将x=-2代入x-1=-2-1=-3≠0,∴x=-2是原分式方程的解.(2)方程两边同乘x-1,得ax+1+2=x-1,若原方程有增根,则x-1=0,解得x=1,将x=1代入整式方程得a+1+2=0,解得a=-3.本题考查解分式方程,属于简单题,对分式方程的结果进行验根是解题关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、【解析】
设直线l和八个正方形的最上面交点为A,过点A作AB⊥OC于点C,易知OB=3,利用三角形的面积公式和已知条件求出A的坐标,再利用待定系数法可求出该直线l的解析式.【详解】设直线l和八个正方形的最上面交点为A,过点A作AB⊥OC于点C∴OB=3∵经过原点的直线将图形分成面积相等的两部分∴直线上方面积分是4∴三角形ABO的面积是5∴∴∴直线经过点设直线l为则∴直线的函数关系式为本题考查了一次函数,难点在于利用已知条件中的面积关系,熟练掌握一次函数相关知识点是解题关键.20、a=-1【解析】
根据分式方程的解法求出方程的解,然后根据方程有增根,则x=-5,从而得出a的值.【详解】去分母可得:1+a=x+5,解得:x=a-2,∵分式方程有增根,∴x=-5,即a-2=-5,解得:a=-1.本题主要考查的是分式方程的解得情况,属于中等难度的题型.分式方程有增根是因为整式方程的解会使得分式的分母为零.21、90°【解析】
点E到边AD,AB,BC的距离相等,可知可知AE、BE分别为∠DAB、∠ABC的角平分线,然后根据角平分线的定义及三角形内角和求解即可.【详解】依题意,可知AE、BE分别为∠DAB、∠ABC的角平分线,又AD∥BC,所以,∠DAB+∠CBA=180°,所以,∠DAB+∠CBA=90°,即∠EAB+∠EBA=90°,所以,∠AEB=90°.故答案为:90°.本题考查了角平分线的判定,平行四边形的性质,三角形内角和等知识,证明AE、BE分别为∠DAB、∠ABC的角平分线是解答本题的关键.22、x1<x1【解析】
由k=-1-a1,可得y随着x的增大而减小,由于1>-1,所以x1<x1.【详解】∵y=(-1-a1)x+1,k=-1-a1<0,∴y随着x的增大而减小,∵1>-1,∴x1<x1.故答案为:x1<x1本题考查的是一次函数,熟练掌握一次函数的性质是解题的关键.23、【解析】
将分式方程中的换,则=,代入后去分母即可得到结果.【详解】解:根据题意得:,去分母得:.故答案为:.此题考查了换元法解分式方程,用换元法解一些复杂的分式方程是比较简单的一种方法,根据方程特点设出相应未知数,解方程能够使问题简单化.二、解答题(本大题共3个小题,共30分)24、(1)A,B两种型号足球的销售价格各是50元/个,90元/个.(2)见解析【解析】
试题分析:(1)设A,B两种型号足球的销售价格各是a元/个,b元/个,由若买2个A型足球和3个B型足球,则要花费370元,若买3个A型足球和1个B型足球,则要花费240元列出方程组解答即可;(2)设购买A型号足球x个,则B型号足球(20﹣x)个,根据费用不低于1300元,不超过1500元,列出不等式组解答即可.解:(1)设A,B两种型号足球的销售价格各是a元/个,b元/个,由题意得解得答:A,B两种型号足球的销售价格各是50元/个,90元/个.(2)设购买A型号足球x个,则B型号足球(20﹣x)个,由题意得,解得7.5≤x≤12.5∵x是整数,∴x=8、9、10、11、12,有5种购球方案:购买A型号足球8个,B型号足球12个;购买A型号足球9个,B型号足球11个;购买A型号足球10个,B型号足球10个;购买A型号足球11个,B型号足球9个;购买A型号足球12个,B型号足球8个.25、(1)S=2a+2;(2)正确,理由见解析【解析】
(1)过点P作PP⊥x轴,PP⊥y轴,由P为线段AB的中点,可知PP,PP是△AOB的中位线,故OA=2PP,OB=2PP,再由点P是反比例函数y=(x>0)图象上的点,可知S=OA×OB=×2PP×2PP=2PP×PP=2a+2;(2)由点Q为线段MN的中点,可知同(1)可得S=S=2a+2,故可得出OA•OB=OM•ON,即,由相似三角形的判定定理可知△AON∽△MOB,故∠OAN=∠OMB,由此即可得出结论.【详解】(1)过点P作PP⊥x轴,PP⊥y轴,∵P为线段AB的中点,∴PP,PP是△AOB的中位线,∴OA=2PP,OB=2PP,∵点P是反比例函数y=(x>0)图象上的点,∴S=OA×OB=×2PP×2PP=2PP×PP=2a+2;(2)结论正确.理由:∵点Q为线段MN的中点,∴同(1)可得S=S=2a+2,∴OA⋅OB=OM⋅ON,∴,∵∠AON=∠MOB,∴△AON∽△MOB,∴∠OAN=∠OMB,∴AN∥MB.此题考查反比例函数综合题,解题关键在于作辅助线26、(1)当;(2)第10天:200元,第15天:270元;(3)最佳销售期有5天,最高为9.6元.【解析】
(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 理发店租赁合同
- 2024年度工程合同履行监管与评估合同2篇
- 私人独栋房产买卖合同模板
- 手机卡租赁合同
- 租房最佳合同范例
- 电影院联营合同 联营合同协议书 2篇
- 地砖铺装合同模板
- 价保合同范本2篇
- 2024年度光伏设备销售与动产质押合同3篇
- 龙门吊5S管理实施2024年度合同
- FZ∕T 74002-2014 运动文胸行业标准
- DLT 689-2012 输变电工程液压压接机
- 人教版选择性必修第三册课件Unit2-Habits-for-a-healthy-life-style
- 义务教育书法课程标准2023版
- (高清版)TDT 1034-2013 市(地)级土地整治规划编制规程
- 工程部年终总结项目工作总结述职报告
- 叶脉书签制作课件
- 肿瘤科出科个案护理小结
- 护理肿瘤科个案汇报
- 23秋国家开放大学《法律职业伦理》形考任务1-3参考答案
- 新生儿除颤仪的操作
评论
0/150
提交评论