版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共6页河北省唐山路北区七校联考2025届数学九上开学检测试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,2002年8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽的《勾股圆方图》(也称《赵爽弦图》),它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,如图所示,如果大正方形的面积是13,小正方形的面积是1,直角三角形的短直角边为a,较长直角边为b,那么的值为()A.13 B.19 C.25 D.1692、(4分)关于数据-4,1,2,-1,2,下面结果中,错误的是()A.中位数为1 B.方差为26 C.众数为2 D.平均数为03、(4分)将抛物线向左平移2个单位后,得到的抛物线的解析式是().A. B. C. D.4、(4分)八(1)班名同学一天的生活费用统计如下表:生活费(元)学生人数(人)则这名同学一天的生活费用中,平均数是()A. B. C. D.5、(4分)某校九年级(1)班全体学生2015年初中毕业体育考试的成绩统计如下表:成绩(分)
35
39
42
44
45
48
50
人数(人)
2
5
6
6
8
7
6
根据上表中的信息判断,下列结论中错误的是()A.该班一共有40名同学B.该班学生这次考试成绩的众数是45分C.该班学生这次考试成绩的中位数是45分D.该班学生这次考试成绩的平均数是45分6、(4分)若二次根式有意义,则x能取的最小整数值是()A.x=0 B.x=1 C.x=2 D.x=37、(4分)对于函数y=﹣2x+2,下列结论:①当x>1时,y<0;②它的图象经过第一、二、四象限;③它的图象必经过点(﹣1,2);④y的值随x的增大而增大,其中正确结论的个数是()A.1B.2C.3D.48、(4分)若=,则x的取值范围是()A.x<3 B.x≤3 C.0≤x<3 D.x≥0二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)若,是一元二次方程的两个实数根,则__________.10、(4分)已知:如图,在四边形ABCD中,∠C=90°,E、F分别为AB、AD的中点,BC=6,CD=4,则EF=______.11、(4分)一个多边形的内角和为1080°,则这个多边形是___边形.12、(4分)计算的结果是__________.13、(4分)如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是.三、解答题(本大题共5个小题,共48分)14、(12分)化简求值:,其中x=.15、(8分)把下列各式因式分解.(1)(2)16、(8分)如图,已知四边形为正方形,点为对角线上的一动点,连接,过点作,交于点,以为邻边作矩形,连接.(1)求证:矩形是正方形;(2)判断与之间的数量关系,并给出证明.17、(10分)小明将一副三角板如图所示摆放在一起,发现只要知道其中一边的长就可以求出其他各边的长.若已知CD=,求AB的长.18、(10分)已知,利用因式分解求的值.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)一个多边形的内角和是它外角和的1.5倍,那么这个多边形是______边形.20、(4分)八年级(1)班安排了甲、乙、丙、丁四名同学参加4×100米接力赛,打算抽签决定四人的比赛顺序,则甲跑第一棒的概率为______.21、(4分)如图,直线与轴、轴分别交于两点,把绕点顺时针旋转后得到,则点的坐标为____.22、(4分)直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k2x>k1x+b的解集为________________23、(4分)如图,平面直角坐标系中,已知直线上一点P(1,1),C为y轴上一点,连接PC,线段PC绕点P顺时针旋转900至线段PD,过点D作直线AB⊥x轴.垂足为B,直线AB与直线交于点A,且BD=2AD,连接CD,直线CD与直线交于点Q,则点Q的坐标为_______.二、解答题(本大题共3个小题,共30分)24、(8分)如图平面直角坐标系中,点,在轴上,,点在轴上方,,,线段交轴于点,,连接,平分,过点作交于.(1)点的坐标为.(2)将沿线段向右平移得,当点与重合时停止运动,记与的重叠部分面积为,点为线段上一动点,当时,求的最小值;(3)当移动到点与重合时,将绕点旋转一周,旋转过程中,直线分别与直线、直线交于点、点,作点关于直线的对称点,连接、、.当为直角三角形时,直接写出线段的长.25、(10分)有两堆背面完全相同的扑克,第一堆正面分别写有数字1、2、1、4,第二堆正面分别写有数字1、2、1.分别混合后,小玲从第一堆中随机抽取一张,把卡片上的数字作为被减数;小惠从第二堆中随机抽取一张,把卡片上的数字作为减数,然后计算出这两个数的差.(1)请用画树状图或列表的方法,求这两数差为0的概率;(2)小玲与小惠作游戏,规则是:若这两数的差为非负数,则小玲胜;否则,小惠胜.你认为该游戏规则公平吗?如果公平,请说明理由.如果不公平,请你修改游戏规则,使游戏公平.26、(12分)孝感市委市政府为了贯彻落实国家的“精准扶贫”战略部署,组织相关企业开展扶贫工作,博大公司为此制定了关于帮扶A、B两贫困村的计划.今年3月份决定从某地运送152箱鱼苗到A、B两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗.已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其运往A、B两村的运费如表:目的地费用车型A村(元/辆)B村(元/辆)大货车800900小货车400600(1)求这15辆车中大小货车各多少辆?(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A、B两村总运费为y元;①试求出y与x的函数解析式;②若运往A村的鱼苗不少于108箱,请你写出使总运费最少的货车调配方案,并求出最少运费.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】试题分析:根据题意得:=13,4×ab=13﹣1=12,即2ab=12,则==13+12=25,故选C.考点:勾股定理的证明;数学建模思想;构造法;等腰三角形与直角三角形.2、B【解析】
A.∵从小到大排序为-4,-1,,1,2,2,∴中位数为1,故正确;B.,,故不正确;C.∵众数是2,故正确;D.,故正确;故选B.3、A【解析】
根据二次函数平移规律,即可得到答案.【详解】解:由“左加右减”可知,抛物线向左平移2个单位后,得到的抛物线的解析式是,故选A.本题主要考查抛物线图像的平移,掌握函数图象的平移规则,“左加右减,上加下减”是解题的关键.4、C【解析】
根据加权平均数公式列出算式求解即可.【详解】解:这名同学一天的生活费用的平均数=.故答案为C.本题考查了加权平均数的计算,读懂题意,正确的运用公式是解题的关键5、D【解析】试题解析:该班人数为:2+5+6+6+8+7+6=40,得45分的人数最多,众数为45,第20和21名同学的成绩的平均值为中位数,中位数为:=45,平均数为:=44.1.故错误的为D.故选D.6、B【解析】
直接利用二次根式的定义分析得出答案.【详解】解:∵二次根式有意义,∴3x﹣2≥0,解得:x≥,则x能取的最小整数值是:1.故选:B.此题主要考查了二次根式的定义,正确得出m的取值范围是解题关键.7、B【解析】
根据一次函数的系数,结合一次函数的性质,逐个分析即可得.【详解】①∵k=﹣2<0,∴一次函数中y随x的增大而减小.∵令y=﹣2x+2中x=1,则y=0,∴当x>1时,y<0成立,即①正确;②∵k=﹣2<0,b=2>0,∴一次函数的图象经过第一、二、四象限,即②正确;③令y=﹣2x+2中x=﹣1,则y=4,∴一次函数的图象不过点(﹣1,2),即③不正确;④∵k=﹣2<0,∴一次函数中y随x的增大而减小,④不正确.故选:B本题考核知识点:一次函数性质.解题关键点:熟记一次函数基本性质.8、C【解析】试题解析:根据题意得:解得:故选C.二、填空题(本大题共5个小题,每小题4分,共20分)9、【解析】
根据根与系数的关系可得出,将其代入中即可求出结论.【详解】解:∵x1,x2是一元二次方程x2+x-2=0的两个实数根,
∴,
∴.
故答案为:.本题考查了根与系数的关系,牢记两根之积等于是解题的关键.10、【解析】
连接BD,利用勾股定理列式求出BD,再根据三角形的中位线平行于第三边并且等于第三边的一半解答.【详解】解:如图,连接BD,∵∠C=90°,BC=6,CD=4,∴BD===2,∵E、F分别为AB、AD的中点,∴EF是△ABD的中位线,∴EF=BD=×2=.故答案为:.本题考查了三角形的中位线平行于第三边并且等于第三边的一半,勾股定理,熟记定理是解题的关键,难点在于作辅助线构造出三角形.11、八【解析】
设这个多边形的边数为n,由n边形的内角和等于180°×(n-2),即可得方程180×(n-2)=1080,解此方程即可求得答案.【详解】解:设这个多边形的边数为n,根据题意得:180×(n-2)=1080,解得:n=8,故答案为:八.此题考查了多边形的内角和公式.此题比较简单,注意熟记公式是准确求解此题的关键,注意方程思想的应用.12、9【解析】
根据二次根式的性质进行化简即可.【详解】=|-9|=9.故答案为:9.此题主要考查了二次根式的化简,注意:.13、n2+2n【解析】试题分析:第1个图形是2×3﹣3,第2个图形是3×4﹣4,第3个图形是4×5﹣5,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是(n+1)(n+2)﹣(n+2)=n2+2n.解:第n个图形需要黑色棋子的个数是n2+2n.故答案为:n2+2n.三、解答题(本大题共5个小题,共48分)14、【解析】
首先按照乘法分配律将原式变形,然后根据分式的基本性质进行约分,再去括号,合并同类项即可进行化简,然后将x的值代入化简后的式子中即可求解.【详解】原式=当时,原式.本题主要考查分式的化简求值,掌握分式的基本性质是解题的关键.15、(1);(2)【解析】
(1)先提取,再利用完全平方公式即可求解;(2)先化简,再利用完全平方公式和平方差公式即可求解.【详解】解:(1)原式(2)原式.此题主要考查因式分解,解题的关键是熟知因式分解的方法.16、(1)详见解析;(2),理由详见解析.【解析】
作出辅助线,得到EN=EM,然后判断∠DEN=∠FEM,得到△DEM≌△FEM,则有DE=EF即可;根据四边形的性质即全等三角形的性质即可证明,即可得在中,则【详解】证明:(1)过作于点,过作于点,如图所示:正方形,,,且,四边形为正方形四边形是矩形,,.,又,在和中,,,矩形为正方形,(2)矩形为正方形,,四边形是正方形,,,,在和中,,,,在中,,本题考查正方形的判定与性质,解题关键在于证明.17、.【解析】
根据等腰直角三角形的性质求出BD,根据勾股定理求出BC,根据正切的定义求出AB.【详解】∵在Rt△BDC中,CD=,∴BD=CD=,∴BC==,∵∠ACB=30°,∴AC=1AB,∵AB1+BC1=AC1,∴AB1+6=4AB1,∴AB=.本题考查了等腰直角三角形的性质,含30°角的直角三角形的性质,以及勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.18、75.【解析】
原式分解因式后,将已知等式代入计算即可求出值.【详解】原式此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、五【解析】设多边形边数为n.则360°×1.5=(n−2)⋅180°,解得n=5.故选C.点睛:多边形的外角和是360度,多边形的内角和是它的外角和的1.5倍,则多边形的内角和是540度,根据多边形的内角和可以表示成(n-2)•180°,依此列方程可求解.20、【解析】【分析】抽签有4种可能的结果,其中抽到甲的只有一种结果,根据概率公式进行计算即可得.【详解】甲、乙、丙、丁四人都有机会跑第一棒,而且机会是均等的,抽签抽到甲跑第一棒有一种可能,所以甲跑第一棒的概率为,故答案为:.【点睛】本题考查了简单的概率计算,用到的知识点为:概率=所求情况数与总情况数之比.21、(7,3)【解析】
先求出点A、B的坐标得到OA、OB的长度,过点作C⊥x轴于C,再据旋转的性质得到四边形是矩形,求出AC、C即可得到答案.【详解】令中y=0得x=3,令x=0得y=4,∴A(3,0),B(0,4),∴OA=3,OB=4,由旋转得,=OB=4,=OA=3,如图:过点作C⊥x轴于C,则四边形是矩形,∴AC==4,C==3,∠OC=90°,∴OC=OA+AC=3+4=7,∴点的坐标是(7,3)故答案为:(7,3).此题考查一次函数与坐标轴的交点坐标,矩形的判定及性质,旋转的性质,利用矩形求对应的线段的长是解题的关键.22、x<-1;【解析】
由图象可以知道,当x=-1时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式k2x>k1x+b解集.【详解】解:两个条直线的交点坐标为(-1,3),且当x<-1时,直线l2在直线l1的上方,故不等式k2x>k1x+b的解集为x<-1.
故本题答案为:x<-1.本题是借助一次函数的图象解一元一次不等式,两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.23、【解析】
如图,过点P作EF∥x轴,交y轴与点E,交AB于点F,则易证△CEP≌△PFD(ASA),∴EP=DF,∵P(1,1),∴BF=DF=1,BD=2,∵BD=2AD,∴BA=3∵点A在直线上,∴点A的坐标为(3,3),∴点D的坐标为(3,2),∴点C的坐标为(0,3),设直线CD的解析式为,则解得:∴直线CD的解析式为,联立可得∴点Q的坐标为.二、解答题(本大题共3个小题,共30分)24、(1)C(3,3);(3)最小值为3+3;(3)D3H的值为3-3或3+3或1-1或1+1.【解析】
(1)想办法求出A,D,B的坐标,求出直线AC,BC的解析式,构建方程组即可解决问题.
(3)如图3中,设BD交O′D′于G,交A′D′于F.作PH⊥OB于H.利用三角形的面积公式求出点D坐标,再证明PH=PB,把问题转化为垂线段最短即可解决问题.
(3)在旋转过程中,符号条件的△GD3H有8种情形,分别画出图形一一求解即可.【详解】(1)如图1中,
在Rt△AOD中,∵∠AOD=93°,∠OAD=33°,OD=3,
∴OA=OD=6,∠ADO=63°,
∴∠ODC=133°,
∵BD平分∠ODC,
∴∠ODB=∠ODC=63°,
∴∠DBO=∠DAO=33°,
∴DA=DB=1,OA=OB=6,
∴A(-6,3),D(3,3),B(6,3),
∴直线AC的解析式为y=x+3,
∵AC⊥BC,
∴直线BC的解析式为y=-x+6,
由,解得,
∴C(3,3).
(3)如图3中,设BD交O′D′于G,交A′D′于F.作PH⊥OB于H.
∵∠FD′G=∠D′GF=63°,
∴△D′FG是等边三角形,
∵S△D′FG=,
∴D′G=,
∴DD′=GD′=3,
∴D′(3,3),
∵C(3,3),
∴CD′==3,
在Rt△PHB中,∵∠PHB=93°,∠PBH=33°,
∴PH=PB,
∴CD'+D'P+PB=3+D′P+PH≤3+D′O′=3+3,
∴CD'+D'P+PB的最小值为3+3.
(3)如图3-1中,当D3H⊥GH时,连接ED3.
∵ED=ED3,EG=EG.DG=D3G,
∴△EDG≌△ED3G(SSS),
∴∠EDG=∠ED3G=33°,∠DEG=∠D3EG,
∵∠DEB=133°,∠A′EO′=63°,
∴∠DEG+∠BEO′=63°,
∵∠D3EG+∠D3EO′=63°,
∴∠D3EO′=∠BEO′,
∵ED3=EB,E=EH,
∴△EO′D3≌△EO′B(SAS),
∴∠ED3H=∠EBH=33°,HD3=HB,
∴∠CD3H=63°,
∵∠D3HG=93°,
∴∠D3GH=33°,设HD3=BH=x,则DG=GD3=3x,GH=x,
∵DB=1,
∴3x+x+x=1,
∴x=3-3.
如图3-3中,当∠D3GH=93°时,同法可证∠D3HG=33°,易证四边形DED3H是等腰梯形,
∵DE=ED3=DH=1,可得D3H=1+3×1×cos33°=1+1.
如图3-3中,当D3H⊥GH时,同法可证:∠D3GH=33°,
在△EHD3中,由∠D3HE=15°,∠HD3E=33°,ED3=1,可得D3H=1×,
如图3-1中,当DG⊥GH时,同法可得∠D3HG=33°,
设DG=GD3=x,则HD3=BH=3x,GH=x,
∴3x+x=1,
∴x=3-3,
∴D3H=3x=1-1.
如图3-5中,当D3H⊥GH时,同法可得D3H=3-3.
如图3-6中,当DGG⊥GH时,同法可得D3H=1+1.
如图3-7中,如图当D3H⊥HG时,同法可得D3H=3+3.
如图3-8中,当D3G⊥GH时,同法可得HD3=1-1.
综上所述,满足条件的D3H的值为3-3或3+3或1-1或1+1.此题考查几何变换综合题,解直角三角形,旋转变换,一次函数的应用,等边三角形的判定和性质,垂线段最短,全等三角形的判定和性质等知识,解题的关键是学会构建一次函数确定交点坐标,学会用分类讨论的思想思考问题.25、(1)表见解析,;(2)不公平,修改规则为:两数的差为正数,则小玲胜;否则,小惠胜.(规则不唯一)【解析】
(1)根据题意列表,再根据概率公式列出式子计算即可,(2)分别求出这两数的差为非负数的概率和差为负数的概率,得出该游戏规则不公平,再通过修
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 ISO/TS 55010:2024 EN Asset management - Guidance on the alignment of financial and non-financial functions in asset management
- 【正版授权】 ISO 24682:2024 EN Ships and marine technology - Technical requirements for “B” class fire-resistant compartment systems of composite mineral wool panel
- 【正版授权】 ISO 23793-1:2024 EN Intelligent transport systems - Minimal risk manoeuvre (MRM) for automated driving - Part 1: Framework,straight-stop and in-lane stop
- 2024年度房地产法律服务合同2篇
- 2024年度个体工商户与雇员劳动合同范本3篇
- 7 平结手链(说课稿)苏教版五年级下册综合实践活动
- 2024年度股权转让合同详细股权比例、估值及支付方式3篇
- 2024年度研发合作合同标的与技术成果分配3篇
- 2024年度企业咖啡厅运营管理合同3篇
- 2024年度公司借款合同书3篇
- 物业公司权责手册运营管理
- 手术切口感染PDCA案例
- 中医医院等级评审申请报告书模板
- 《农产品电子商务》课件
- ITIL认证考试练习题及答案1-2023背题版
- 优化医院人员管理的数字化方案
- 残余肾功能意义及保护策略课件
- 社区组织管理体系
- 《高速铁路客运服务礼仪》试题及答案 项目7 试题库
- 资产运营部副部长竞聘稿理
- 结肠炎:心理护理与调节
评论
0/150
提交评论