河北省沧州市教育局石油分局2025届九上数学开学调研模拟试题【含答案】_第1页
河北省沧州市教育局石油分局2025届九上数学开学调研模拟试题【含答案】_第2页
河北省沧州市教育局石油分局2025届九上数学开学调研模拟试题【含答案】_第3页
河北省沧州市教育局石油分局2025届九上数学开学调研模拟试题【含答案】_第4页
河北省沧州市教育局石油分局2025届九上数学开学调研模拟试题【含答案】_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页河北省沧州市教育局石油分局2025届九上数学开学调研模拟试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)下列数据特征量:平均数、中位数、众数、方差之中,反映集中趋势的量有()个.A. B. C. D.2、(4分)下列方程中是二项方程的是()A.; B.=0; C.; D.=1.3、(4分)下列四组线段中,能组成直角三角形的是A.,, B.,,C.,, D.,,4、(4分)下列说法中正确的是()A.点(2,3)和点(3,2)表示同一个点B.点(-4,1)与点(4,-1)关于x轴对称C.坐标轴上的点的横坐标和纵坐标只能有一个为0D.第一象限内的点的横坐标与纵坐标均为正数5、(4分)如图,AC=BC,AE=CD,AE⊥CE于点E,BD⊥CD于点D,AE=7,BD=2,则DE的长是()A.7 B.5 C.3 D.26、(4分)下列四组线段中,可以构成直角三角形的是()A.4,5,6 B.5,12,13 C.2,3,4 D.1,,37、(4分)已知:如图在直角坐标系中,有菱形OABC,A点的坐标为(10,0),对角线OB、AC相交于D点,双曲线x0经过D点,交AB于E点,且OB∙AC=160,则点E的坐标为().A.(3,8) B.(12,) C.(4,8) D.(12,4)8、(4分)五一假期小明一家自驾去距家360km的某地游玩,全程的前一部分为高速公路,后一部分为乡村公路.若小汽车在高速公路和乡村公路上分别以某一速度匀速行驶,行驶的路程y(单位:km)与时间x(单位:h)之间的关系如图所示,则下列结论正确的是()A.小汽车在乡村公路上的行驶速度为60km/hB.小汽车在高速公路上的行驶速度为120km/hC.乡村公路总长为90kmD.小明家在出发后5.5h到达目的地二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)某班同学要测量学校升国旗的旗杆高度,在同一时刻,量得某同学的身高是1.5米,影长是1米,且旗杆的影长为8米,则旗杆的高度是_________________米.10、(4分)将函数的图象沿y轴向下平移1个单位,则平移后所得图象的解析式是____.11、(4分)计算:3-2=;12、(4分)若一个三角形的三边长分别为5、12、13,则此三角形的面积为.13、(4分)某种服装原价每件80元,经两次降价,现售价每件1.8元,这种服装平均每次降价的百分率是________。三、解答题(本大题共5个小题,共48分)14、(12分)计算:(1)(2)15、(8分)已知:如图,在矩形中,点,分别在,边上,,连接,.求证:.16、(8分)先化简,再求值,其中.17、(10分)(1)解不等式:(2)解方程:18、(10分)如图,四边形ABCD是菱形,AC=24,BD=10,DH⊥AB于点H,求菱形的面积及线段DH的长.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)若反比例函数y=a-3x的图象在二、四象限,则常数a的值可以是_____.(写出一个即可20、(4分)已知一组数据1,2,0,-1,x,1的平均数是1,则这组数据的极差为____.21、(4分)如下图,将边长为9cm的正方形纸片ABCD折叠,使得点A落在边CD上的E点,折痕为MN.若CE的长为6cm,则MN的长为_____cm.22、(4分)直线y=3x+2沿y轴向下平移4个单位,则平移后直线与y轴的交点坐标为_______.23、(4分)若等腰三角形的顶角与一个底角度数的比值等于,该等腰三角形的顶角为_________.二、解答题(本大题共3个小题,共30分)24、(8分)在一个边长为(2+3)cm的正方形的内部挖去一个长为(2+)cm,宽为(﹣)cm的矩形,求剩余部分图形的面积.25、(10分)如图,在▱ABCD中,O是对角线AC的中点,AB⊥AC,BC=4cm,∠B=60°,动点P从点B出发,以2cm/s的速度沿折线BC﹣CD向终点D运动,连结PO并延长交折线DA﹣AB于点Q,设点P的运动时间为t(s).(1)当PQ与▱ABCD的边垂直时,求PQ的长;(2)当t取何值时,以A,P,C,Q四点组成的四边形是矩形,并说明理由;(3)当t取何值时,CQ所在直线恰好将▱ABCD的面积分成1:3的两部分.26、(12分)如图,四边形ABCD是平行四边形,E、F是对角线AC上的两点,且AE=CF,顺次连接B、E、D,F.求证:四边形BEDF是平行四边形.

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B【解析】

根据平均数、中位数、众数、方差的性质判断即可.【详解】数据的平均数、众数、中位数是描述一组数据集中趋势的特征量,方差是衡量一组数据偏离其平均数的大小(即波动大小)的特征数.故选B.本题考查的是平均数、中位数、众数、方差,掌握它们的性质是解题的关键.2、C【解析】【分析】二项方程:如果一元n次方程的一边只有含未知数的一项和非零的常数项,另一边是零,那么这样的方程就叫做二项方程.据此可以判断.【详解】A.,有2个未知数项,故不能选;B.=0,没有非0常数项,故不能选;C.,符合要求,故能选;D.=1,有2个未知数项,故不能选.故选C【点睛】本题考核知识点:二项方程.解题关键点:理解二项方程的定义.3、D【解析】

由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【详解】A.1²+2²≠3²,故不是直角三角形,故本选项错误;

B.2²+3²≠4²故不是直角三角形,故本选项错误;

C.2²+4²≠5²,故不是直角三角形,故本选项错误;

D.3²+4²=5²,故是直角三角形,故本选项正确.

故选D.本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.4、D【解析】分析:根据平面直角坐标系中点的位置,即可做出判断.详解:A.点(2,3)和点(3,2)表示同一个象限内的两个点,所以A错误;B.点(﹣4,1)与点(4,1)关于x轴对称,所以B错误;C.坐标轴上的点的横坐标和纵坐标可以有一个为0,也可以两个都为0,所以C错误.D.第一象限内的点的横坐标与纵坐标均为正数,正确.故选D.点睛:解决本题的关键是要熟悉并确定点在坐标系中的位置,还涉及到点的对称问题,同时要牢记各象限内点的坐标的符号.5、B【解析】

首先由AC=BC,AE=CD,AE⊥CE于点E,BD⊥CD于点D,判断出Rt△AEC≌Rt△CDB,又由AE=7,BD=2,得出CE=BD=2,AE=CD=7,进而得出DE=CD-CE=7-2=5.【详解】解:∵AC=BC,AE=CD,AE⊥CE于点E,BD⊥CD于点D,∴Rt△AEC≌Rt△CDB又∵AE=7,BD=2,∴CE=BD=2,AE=CD=7,DE=CD-CE=7-2=5.此题主要考查直角三角形的全等判定,熟练运用即可得解.6、B【解析】

根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形判定即可.【详解】解:A、∵42+52≠62,∴该三角形不符合勾股定理的逆定理,故不可以构成直角三角形;

B、∵52+122=132,∴该三角形符合勾股定理的逆定理,故可以构成直角三角形;

C、∵22+32≠42,∴该三角形不符合勾股定理的逆定理,故不可以构成直角三角形;

D、∵12+()2≠32,∴该三角形不符合勾股定理的逆定理,故不可以构成直角三角形.

故选:B.本题考查勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.7、B【解析】

过点B作轴于点,由可求出菱形的面积,由点的坐标可求出的长,根据勾股定理求出的长,故可得出点的坐标,对角线相交于D点可求出点坐标,用待定系数法可求出双曲线的解析式,与的解析式联立,即可求出点的坐标.【详解】过点B作轴于点,,点的坐标又菱形的边长为10,在中,又点是线段的中点,点的坐标为又直线的解析式为联立方程可得:解得:或,点的坐标为故选:B.本题主要考查反比例函数与一次函数以及菱形综合,熟练的掌握菱形面积求法是解决本题的关键.8、A【解析】

根据一次函数图象的性质和“路程=速度×时间”的关系来分析计算即可.【详解】解:小汽车在乡村公路上的行驶速度为:(270﹣180)÷(3.5﹣2)=60km/h,故选项A正确,小汽车在高速公路上的行驶速度为:180÷2=90km/h,故选项B错误,乡村公路总长为:360﹣180=180km,故选项C错误,小明家在出发后:2+(360﹣180)÷60=5h到达目的地,故选项D错误,故选:A.一次函数在实际生活中的应用是本题的考点,根据题意读懂图形及熟练掌握“路程=速度×时间”的关系是解题的关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、1.【解析】

在同一时刻,物体的实际高度和影长成比例,据此列方程即可解答.【详解】解:设旗杆高度为x,则,解得x=1.故答案为:1.本题考查相似三角形的应用,熟知同一时刻物高与影长成正比是解题关键.10、y=-4x-1【解析】

根据函数图象的平移规律:上加下减,可得答案.【详解】解:将函数y=-4x的图象沿y轴向下平移1个单位,则平移后所得图象的解析式是y=-4x-1.

故答案为:y=-4x-1.本题考查了一次函数图象与几何变换,利用一次函数图象的平移规律是解题关键.11、【解析】根据负整数指数为正整数指数的倒数计算.解:3-2=.故答案为.12、30【解析】

解:先根据勾股定理的逆定理判定三角形是直角三角形,再利用面积公式求得面积.解:∵52+122=132,∴三边长分别为5、12、13的三角形构成直角三角形,其中的直角边是5、12,∴此三角形的面积为×5×12=3013、10%【解析】

设这种服装平均每件降价的百分率是x,则降一次价变为80(1-x),降两次价变为80(1-x)2,而这个值等于1.8,从而得方程,问题得解.【详解】解:设这种服装平均每件降价的百分率是x,由题意得

80(1-x)2=1.8

∴(1-x)2=0.81

∴1-x=0.9或1-x=-0.9

∴x=10%或x=1.9(舍)

故答案为10%.本题是一元二次方程的基本应用题,明白降两次价变为原来的(1-x)2倍是解题的关键.三、解答题(本大题共5个小题,共48分)14、(1);(2)--.【解析】【分析】(1)根据同分母分式加减法的法则进行计算即可得;(2)利用多项式乘多项式的法则进行展开,然后再合并同类二次根式即可得.【详解】(1)==;(2)原式=-+-=--.【点睛】本题考查了分式的加减法、二次根式的混合运算,熟练掌握同分母分式加减法法则、二次根式混合运算的运算法则是解题的关键.15、见解析【解析】

根据矩形的性质得出DC∥AB,DC=AB,求出CF=AE,CF∥AE,根据平行四边形的判定得出四边形AFCE是平行四边形,即可得出答案.【详解】证明:∵四边形ABCD是矩形,

∴DC∥AB,DC=AB,

∴CF∥AE,

∵DF=BE,

∴CF=AE,

∴四边形AFCE是平行四边形,

∴AF=CE.本题考查了平行四边形的性质和判定,矩形的性质的应用,注意:矩形的对边相等且平行,平行四边形的对边相等.16、【解析】

先把分式通分,把除法转换成乘法,再化简,然后进行计算【详解】解:==·=x-1当x=+1时,原式=+1-1=故答案为本题考查了分式的混合运算-化简求值,是中考常考题,解题关键在于细心计算.17、(1);(2)【解析】

(1)按照去分母、移项、合并同类项的步骤求解即可;(2)按照去分母、系数化1的步骤求解即可.【详解】(1)去分母得移项、合并得解得所以不等式的解集为(2)去分母得解得经检验,是分式方程的解.此题主要考查不等式以及分式方程的求解,熟练掌握,即可解题.18、【解析】

先根据菱形的面积等于对角线乘积的一半求出菱形的面积,然后再根据勾股定理求出菱形的边长,利用菱形面积的以一求解方法,边长乘高即可求得DH的长.【详解】在菱形ABCD中,AC⊥BD,∵AC=24,BD=10,∴AO=AC=12,BO=BD=5,S菱形ABCD=,∴AB==13,∵S菱形ABCD=AB·DH=120,∴DH=.本题考查了菱形的性质、勾股定理、菱形的面积等,注意菱形的面积等于对角线乘积的一半,也等于底乘高.一、填空题(本大题共5个小题,每小题4分,共20分)19、2(答案不唯一).【解析】

由反比例函数y=a-3x的图象在二、四象限,可知a-3<0,据此可求出a的取值范围【详解】∵反比例函数y=a-3x∴a-3<0,∴a<3,∴a可以取2.故答案为2.本题考查了反比例函数的图像与性质,对于反比例函数y=kx(k是常数,k≠0),当k>0,反比例函数图象的两个分支在第一、三象限,在每一象限内,y随x的增大而减小;当k<0,反比例函数图象的两个分支在第二、四象限,在每一象限内,y随x20、4【解析】

根据平均数的定义求出x的值,再根据极差的定义解答.【详解】1+2+0-1+x+1=1×6,所以x=3,则这组数据的极差=3-(-1)=4,故答案为:4.本题考查了算术平均数、极差,熟练掌握算术平均数、极差的概念以及求解方法是解题的关键.21、3【解析】

根据图形折叠前后图形不发生大小变化得出∠MWE=∠AWM=90°,进而得出∠DAE=∠DAE,再证明△NFM≌△ADE,然后利用勾股定理的知识求出MN的长.【详解】解:作NF⊥AD,垂足为F,连接AE,NE,∵将正方形纸片ABCD折叠,使得点A落在边CD上的E点,折痕为MN,

∴∠D=∠AHM=90°,∠DAE=∠DAE,

∴△AHM∽△ADE,

∴∠AMN=∠AED,

在△NFM和△ADE中

∵,

∴△NFM≌△ADE(AAS),

∴FM=DE=CD-CE=3cm,

又∵在Rt△MNF中,FN=9cm,

∴根据勾股定理得:MN==3(cm).

故答案为3.本题考查了图形的翻折变换,根据图形折叠前后图形不发生大小变化得出三角形的全等是解决问题的关键,难度一般.22、(0,-2)【解析】y=3x+2沿y轴向下平移4个单位y=3x+2-4=3x-2,令x=0,y=-2,所以(0,-2).故交点坐标(0,-2).23、360【解析】

根据等腰三角形的性质得出∠B=∠C,根据三角形内角和定理和已知得出5∠A=180°,求出即可.【详解】∵△ABC中,AB=AC,∴∠B=∠C,∵等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=,∴∠A:∠B=1:2,即5∠A=180°,∴∠A=36°,故答案为:36°此题考查等腰三角形的性质,三角形内角和定理,解题关键在于得到5∠A=180°二、解答题(本大题共3个小题,共30分)24、57+12﹣【解析】试题分析:用大正方形的面积减去长方形的面积即可求出剩余部分的面积.试题解析:剩余部分的面积为:(2+3)2﹣(2+)(﹣)=(12+12+45)﹣(6﹣2+2﹣5)=(57+12﹣)(cm2).考点:二次根式的应用25、(1)PQ=cm或2cm;(2)t=秒;(3)t为1秒或秒.【解析】

(1)分当PQ⊥BC和当PQ⊥CD两种情况,利用含30度角的直角三角形的性质即可得出结论;

(2)当点P在BC边和当点P在CD上两种情况,利用矩形的性质即可得出结论;

(3)利用平行四边形的性质得出S△ABC=S△ACD=S▱ABCD,进而分当点Q在边AD上和点Q在边AB上利用三角形的中线的性质即可得出结论.【详解】解:(1)当PQ⊥BC时,如图1,∵AB⊥AC,∴∠BAC=90°,在Rt△ABC中,BC=4cm,∠B=60°,∴∠ACB=30°,AB=2,AC=2,∵点O是AC的中点,∴OC=AC=,在Rt△OPC中,OP=OC=,易知,△AOQ≌△COP,∴OQ=OP,∴PQ=2OP=cm,当PQ⊥CD时,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠AC

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论