河北省保定市竞秀区乐凯中学2024-2025学年九上数学开学检测模拟试题【含答案】_第1页
河北省保定市竞秀区乐凯中学2024-2025学年九上数学开学检测模拟试题【含答案】_第2页
河北省保定市竞秀区乐凯中学2024-2025学年九上数学开学检测模拟试题【含答案】_第3页
河北省保定市竞秀区乐凯中学2024-2025学年九上数学开学检测模拟试题【含答案】_第4页
河北省保定市竞秀区乐凯中学2024-2025学年九上数学开学检测模拟试题【含答案】_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页河北省保定市竞秀区乐凯中学2024-2025学年九上数学开学检测模拟试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)下列各点中,在函数y=2x-5图象上的点是()A.(0,0) B.(,-4) C.(3,-1) D.(-5,0)2、(4分)如图,l1//l2,▱ABCD的顶点A在l1上,BC交l2于点E,若A.100∘ B.90∘ C.803、(4分)已知一个正多边形的每个外角等于,则这个正多边形是()A.正五边形 B.正六边形 C.正七边形 D.正八边形4、(4分)某数学兴趣小组6名成员通过一次数学竞赛进行组内评比,他们的成绩分别是89,92,91,93,96,91,则关于这组数据说法正确的是()A.中位数是92.5 B.平均数是92 C.众数是96 D.方差是55、(4分)如图,在矩形ABCD中,E为AD的中点,∠BED的平分线交BC于点F,若AB=3,BC=8,则FC的长度为()A.6 B.5 C.4 D.36、(4分)函数中自变量x的取值范围是()A.x≥1B.x≤1C.x≠1D.x>17、(4分)已知直角三角形中30°角所对的直角边长是cm,则另一条直角边的长是()A.4cm B.cm C.6cm D.cm8、(4分)如图,将矩形纸片ABCD沿其对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点E,若AB=8,AD=3,则图中阴影部分的周长为()A.16 B.19 C.22 D.25二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,△ABO的面积为3,且AO=AB,反比例函数y=kx的图象经过点A,则k的值为___10、(4分)如图,菱形ABCD的对角线的长分别为2和5,P是对角线AC上任一点(点P不与点A、C重合),且PE∥BC交AB于E,PF∥CD交AD于F,则阴影部分的面积是__________.11、(4分)合作小组的4位同学在课桌旁讨论问题,学生A的座位如图所示,学生B,C,D随机坐到其他三个座位上,则B坐在2号座位的概率是.12、(4分)若不等式组恰有两个整数解,则m的取值范围是__________.13、(4分)根据如图所示的程序,当输入x=3时,输出的结果y=________.三、解答题(本大题共5个小题,共48分)14、(12分)如图,在平面直角坐标系中,已知点A(-3,0),B(0,-1),C(0,)三点.(1)求直线AB的解析式.(2)若点D在直线AB上,且DB=DC,尺规作图作出点D(保留作图痕迹),并求出点D的坐标.15、(8分)(阅读理解)对于任意正实数、,∵,∴∴,只有当时,等号成立.(数学认识)在(、均为正实数)中,若为定值,则,只有当时,有最小值.(解决问题)(1)若时,当_____________时,有最小值为_____________;(2)如图,已知点在反比例函数的图像上,点在反比例函数的图像上,轴,过点作轴于点,过点作轴于点.求四边形周长的最小值.16、(8分)某中学开学初到商场购买A.B两种品牌的足球,购买A种品牌的足球50个,B种品牌的足球25个,共花费4500元.已知购买一个B种品牌的足球比购买一个A种品牌的足球多花30元(1)求购买一个A种品牌、一个B种品牌的足球各需多少元?(2)学校为了响应“足球进校园”的号召,决定再次购进A.B两种品牌足球共50个,正好赶上商场对商品价格进行调整,A品牌足球售价比第一次购买时提高4元,B品牌足球按第一次购买时售价的9折出售,如果学校此次购买A.B两种品牌足球的总费用不超过第一次花费的70%,且保证这次购买的B种品牌足球不少于23个,则这次学校有哪几种购买方案?17、(10分)如图,在平面直角坐标系中,直线分别与轴、轴交于点,,且点的坐标为,点为的中点.(1)点的坐标是________,点的坐标是________;(2)直线上有一点,若,试求出点的坐标;(3)若点为直线上的一个动点,过点作轴的垂线,与直线交于点,设点的横坐标为,线段的长度为,求与的函数解析式.18、(10分)遂宁骑自行车旅行越来越受到人们的喜爱,各种品牌的山地自行车相继投放市场,某车行经营的A型车去年2月份销售总额为3万元,今年经过改造升级后A型车每辆销售价比去年增加300元,若今年2月份与去年2月份卖出的A型车数量相同,则今年2月份A型车销售总额将比去年2月份销售总额增加20%.(1)求今年2月份A型车每辆销售价多少元?(2)该车行计划今年3月份新进一批A型车和B型车共40辆,且B型车的进货数量不超过A型车数量的2倍,A、B两种型号车的进货和销售价格如表,问应如何进货才能使这批车获利最多?A型车B型车进货价格(元/辆)9001000销售价格(元/辆)今年的销售价格2000B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,菱形ABCD的周长为40,则OH的长等于_____.20、(4分)如图,在RtΔABC中,∠ACB=90°,D是AB的中点,若∠A=2621、(4分)已知a2-2ab+b2=6,则a-b=_________.22、(4分)2019年中国北京世界园艺博览会(以下简称“世园会”)于4月29日至10月7日在北京延庆区举行世园会为满足大家的游览需求,倾情打造了4条各具特色的趣玩路线,分别是:.“解密世园会”、.“爱我家,爱园艺”、C.“园艺小清新之旅”和D.“快速车览之旅”李欣和张帆都计划暑假去世园会,他们各自在这4条线路中任意选择条线路游览,每条线路被选择的可能性相同.李欣和张帆恰好选择同线路游览的概率为_______.23、(4分)如图,已知等腰直角△ABC中,∠BAC=90°,AD⊥BC于点D,AB=5,点E是边AB上的动点(不与A,B点重合),连接DE,过点D作DF⊥DE交AC于点F,连接EF,点H在线段AD上,且DH=AD,连接EH,HF,记图中阴影部分的面积为S1,△EHF的面积记为S2,则S1=_____,S2的取值范围是_____.二、解答题(本大题共3个小题,共30分)24、(8分)如图,为锐角三角形,是边上的高,正方形的一边在上,顶点、分别在、上.已知,.(1)求证:;(2)求这个正方形的面积.25、(10分)当自变量取何值时,函数与的值相等?这个函数值是多少?26、(12分)已知:AC是菱形ABCD的对角线,且AC=BC.(1)如图①,点P是△ABC的一个动点,将△ABP绕着点B旋转得到△CBE.①求证:△PBE是等边三角形;②若BC=5,CE=4,PC=3,求∠PCE的度数;(2)连结BD交AC于点O,点E在OD上且DE=3,AD=4,点G是△ADE内的一个动点如图②,连结AG,EG,DG,求AG+EG+DG的最小值.

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B【解析】

只要把点的坐标代入一次函数的解析式,若左边=右边,则点在函数的图象上,反之就不在函数的图象上,代入检验即可.【详解】解:A、把(0,0)代入y=2x-5得:左边=0,右边=2×(0-1)-5=-5,左边≠右边,故A选项错误;

B、把(,-4)代入y=2x-5得:左边=-4,右边=2×-5=-4,左边=右边,故B选项正确;

C、把(3,-1)代入y=2x-5得:左边=-1,右边=2×3-5=1,左边≠右边,故C选项错误;

D、把(-5,0)代入y=2x-5得:左边=0,右边=2×(-5)-5=-15,左边≠右边,故D选项错误.

故选:B.本题主要考查对一次函数图象上点的坐标特征的理解和掌握,能根据点的坐标判断是否在函数的图象上是解此题的关键.2、B【解析】

由平行四边形的性质得出∠BAD=∠C=100°,AD∥BC,由平行线的性质得出∠2=∠ADE,∠ADE+∠BAD+∠1=180°,得出∠1+∠2=180°-∠BAD=80°即可.【详解】解:∵四边形ABCD是平行四边形,

∴∠BAD=∠C=100°,AD∥BC,

∴∠2=∠ADE,

∵l1∥l2,

∴∠ADE+∠BAD+∠1=180°,

∴∠1+∠2=180°-∠BAD=80°;

故选:C.本题考查了平行四边形的性质、平行线的性质;熟练掌握平行四边形的性质和平行线的性质是解题的关键.3、B【解析】分析:根据多边形的外角和为360°即可得出答案.详解:360°÷60°=6,即六边形,故选B.点睛:本题主要考查的是正多边形的外角和定理,属于基础题型.多边形的内角和定理为(n-2)×180°,多边形的外角和为360°.4、B【解析】试题解析:这组数据按照从小到大的顺序排列为:89,91,91,92,93,96,则中位数为:,故A错误;平均数为:,故B正确;众数为:91,故C错误;方差S2==,故D错误.故选A.5、D【解析】

根据矩形点的性质可得AD∥BC,AD=BC,再求出AE的长度,再根据勾股定理列式求出BE的长,然后根据角平分线的定义求出∠BEF=∠DEF,根据两直线平行,内错角相等求出∠BFE=∠DEF,再求出BEF=∠BFE,根据等角对等边可得BE=BF,然后根据FC=BC-BF代入数据计算即可得解.【详解】解:在矩形ABCD中,AD∥BC,AD=BC=8,∵E为AD的中点,∴AE=AD=×8=4,在Rt△ABE中,,∵EF是∠BED的角平分线,∴∠BEF=∠DEF,∵AD∥BC,∴∠BFE=∠DEF,∴BEF=∠BFE,∴BE=BF,∴FC=BC-BF=8-5=1.故选:D.本题考查了矩形的性质,勾股定理的应用,两直线平行,内错角相等的性质,等角对等边的性质,熟记各性质是解题的关键.6、A【解析】试题分析:当x+1≥0时,函数有意义,所以x≥1,故选:A.考点:函数自变量的取值范围.7、C【解析】如图,∵∠C=90°,∠B=30°,AC=2cm,∴AB=2AC=4cm,由勾股定理得:BC==6cm,故选C.8、C【解析】

首先由四边形ABCD为矩形及折叠的特性,得到B′C=BC=AD,∠B′=∠B=∠D=90°,∠B′EC=∠DEA,得到△AED≌△CEB′,得出EA=EC,再由阴影部分的周长为AD+DE+EA+EB′+B′C+EC,即矩形的周长解答即可.【详解】解:∵四边形ABCD为矩形,∴B′C=BC=AD,∠B′=∠B=∠D=90°∵∠B′EC=∠DEA,在△AED和△CEB′中,,∴△AED≌△CEB′(AAS);∴EA=EC,∴阴影部分的周长为AD+DE+EA+EB′+B′C+EC,=AD+DE+EC+EA+EB′+B′C,=AD+DC+AB′+B′C,=3+8+8+3,=22,故选:C.本题主要考查了图形的折叠问题,全等三角形的判定和性质,及矩形的性质.熟记翻折前后两个图形能够重合找出相等的角是解题的关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、1【解析】

过点A作OB的垂线,垂足为点C,根据等腰三角形的性质得OC=BC,再根据三角形的面积公式得到12OB•AC=1,易得OC•AC=1,设A点坐标为(x,y),即可得到k=xy=OC•AC=1【详解】过点A作OB的垂线,垂足为点C,如图,∵AO=AB,∴OC=BC=12OB∵△ABO的面积为1,∴12OB⋅AC=1∴OC⋅AC=1.设A点坐标为(x,y),而点A在反比例函数y=kx(k>0)∴k=xy=OC⋅AC=1.故答案为:1.此题考查反比例函数系数k的几何意义,解题关键在于作辅助线.10、【解析】

根据题意可得阴影部分的面积等于△ABC的面积,因为△ABC的面积是菱形面积的一半,根据已知可求得菱形的面积则不难求得阴影部分的面积.【详解】设AP,EF交于O点,∵四边形ABCD为菱形,∴BC∥AD,AB∥CD.∵PE∥BC,PF∥CD,∴PE∥AF,PF∥AE.∴四边形AEFP是平行四边形.∴S△POF=S△AOE.即阴影部分的面积等于△ABC的面积.∵△ABC的面积等于菱形ABCD的面积的一半,菱形ABCD的面积=ACBD=5,∴图中阴影部分的面积为5÷2=.11、.【解析】根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.因此,∵坐到1,2,3号的坐法共有6种方法:BCD、BDC、CBD、CDB、DBC、DCB,其中有2种方法(CBD、DBC)B坐在2号座位,∴B坐在2号座位的概率是.12、-1≤m<0【解析】分析:先求出不等式的解集,根据题意得出关于m的不等式组,求出不等式组的解集即可.详解:∵不等式组的解集为又∵不等式组恰有两个整数解,∴解得:.恰有两个整数解,故答案为:点睛:考查一元一次不等式的整数解,解题的关键是写出不等式组的解集.13、1【解析】

根据自变量与函数值的对应关系,可得相应的函数值.【详解】当x=3时,y=﹣3+5=1.故答案为:1.本题考查了函数值,将自变量的值代入相应的函数关系式是解题的关键.三、解答题(本大题共5个小题,共48分)14、(1)y=x-1;(2)画图见解析,点D的坐标为(,).【解析】

(1)设直线AB解析式为:y=kx+b,把A,B坐标代入,求解即可;(2)按照题目要求画图即可,根据题意可得点D在线段BC垂直平分线上,据此可求出D点坐标.【详解】(1)设直线AB解析式为:y=kx+b,代入点A(-3,0),B(0,-1),得:,解得,∴直线AB解析式为:y=x-1;(2)如图所示:∵B(0,-1),C(0,),DB=DC,∴点D在线段BC垂直平分线上,∴D的纵坐标为,又∵点D在直线AB上,令y=,得x=,∴点D的坐标为(,).本题考查了用待定系数法求一次函数解析式,尺规作图,垂直平分线的性质,掌握知识点是解题关键.15、(1)1,1;(1)2.【解析】

(1)根据题意,利用完全平方式即可求解;

(1)根据反比例函数的解析式,设出A和B的坐标,然后表示出周长,再根据上面的知识求解即可;【详解】解:(1)1,1.(1)解:设,则,∴四边形周长.∴四边形周长的最小值为2.此题属于反比例函数综合题,考查了几何不等式的应用,理解在

(a,

b均为正实数)中,若ab为定值k,则只有当a=b时,a+b有最小值是关键.16、(1)A种足球50元,B种足球80元;(2)方案一:购买A种足球25个,B种足球25个;方案二:购买A种足球26个,B种足球24个;方案三:购买A种足球27个,B种足球23个.【解析】

(1)设A种品牌足球的单价为x元,B种品牌足球的单价为y元,根据“总费用=买A种足球费用+买B种足球费用,以及B种足球单价比A种足球贵30元”可得出关于x、y的二元一次方程组,解方程组即可得出结论;(2)设第二次购买A种足球m个,则购买B种足球(50-m)个,根据“总费用=买A种足球费用+买B种足球费用,以及B种足球不小于23个”可得出关于m的一元一次不等式组,解不等式组可得出m的取值范围,由此即可得出结论.【详解】(1)设A种品牌足球的单价为x元,B种品牌足球的单价为y元,依题意得:,解得:.答:购买一个A种品牌的足球需要50元,购买一个B种品牌的足球需要80元.(2)设第二次购买A种足球m个,则购买B种足球(50−m)个,依题意得:,解得:25⩽m⩽27.故这次学校购买足球有三种方案:方案一:购买A种足球25个,B种足球25个;方案二:购买A种足球26个,B种足球24个;方案三:购买A种足球27个,B种足球23个.此题考查二元一次方程组的应用,一元一次不等式组的应用,解题关键在于根据题意列出方程.17、(1),;(2)或;(3).【解析】

(1)将点A(8,0)代入可求得一次函数解析式,再令x=0即可得到B点坐标;因为C是A、B中点,利用中点坐标公式可求出C点坐标;(2)先求出△AOC的面积,则△NOA的面积为△AOC的面积的一半,设N点的坐标,可根据列出方程求解;(3)可先求出直线OC的函数解析式,把点P、Q坐标表示出来,分情况讨论即可得出答案.【详解】解:(1)将A(8,0)代入得:,解得:b=6;∴令x=0,得:y=6,∴点的坐标为∵C为AB中点,∴的坐标为故答案为:点的坐标为,的坐标为;(2)或由题可得S△AOC=∵∴S△NOA=设S△NOA=解得:n=6或n=10将n=6代入得;将n=10代入得;∴或(3)依照题意画出图形,如图所示.解图1解图2∵.设直线的解析式为,则有,解得:,∴直线的解析式为.∵点在直线上,点在直线上,点的横坐标为,轴,∴,当时,;当时,.故与的函数解析式为.本题考查待定系数法求函数解析式,坐标系中三角形面积的算法以及线段长度的算法,在计算的时注意分类讨论.18、(1)今年的销售价为1800元;(2)购进A型车14辆,B型车26辆,获利最多.【解析】

(1)设去年2月份A型车每辆的售价为x元,则今年2月份A型车每辆的售价为(x+300)元,然后依据今年2月份与去年2月份卖出的A型车数量相同列方程求解即可;(2)设购进A型车m辆,获得的总利润为w元,则购进B型车(40﹣m)辆,然后列出W与m的函数关系式,然后依据一次函数的性质求解即可.【详解】解:(1)设去年2月份A型车每辆的售价为x元,则今年2月份A型车每辆的售价为(x+300)元,根据题意得:,解得:x=1500,经检验,x=1500是原方程的解,则今年的销售价为1500+300=1800元.(2)设购进A型车m辆,获得的总利润为w元,则购进B型车(40﹣m)辆,根据题意得:w=(1800﹣900)m+(2000﹣1000)(40﹣m)=﹣10m+1.又∵40﹣m≤2m,∴m≥13.∵k=﹣100<0,∴当m=14时,w取最大值.答:购进A型车14辆,B型车26辆,获利最多.本题考查了一次函数的应用、分式方程的应用,依据题意列出分式方程、得到W与m的函数关系式是解题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、2【解析】

首先求得菱形的边长,则OH是直角△AOD斜边上的中线,依据直角三角形的性质即可求解.【详解】AD=×40=1.∵菱形ANCD中,AC⊥BD.∴△AOD是直角三角形,又∵H是AD的中点,∴OH=AD=×1=2.故答案是:2.本题考查了菱形的性质和直角三角形的性质,直角三角形斜边上的中线等于斜边的一半.20、52【解析】

根据直角三角形的性质得AD=CD,由等腰三角形性质结合三角形外角性质可得答案.【详解】∵∠ACB=90°,D是AB上的中点,∴CD=AD=BD,∴∠DCA=∠A=26°,∴∠BDC=2∠A=52°.故答案为52.此题考查了直角三角的性质及三角形的外角性质,掌握直角三角形斜边中线等于斜边一半的性质是解题的关键.21、【解析】由题意得(a-b)2="6,"则=22、【解析】

画出树状图,共有16种等可能的结果,李欣和张帆恰好选择同一线路游览的结果有4种,由概率公式即可得出结果.【详解】画树状图分析如下:共有16种等可能的结果,李欣和张帆恰好选择同一线路游览的结果有4种,∴李欣和张帆恰好选择同一线路游览的概率为.本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.23、【解析】

作EM⊥BC于M,作FN⊥AD于N,根据题意可证△ADF≌△BDE,可得△DFE是等腰直角三角形.可证△BME≌△ANF,可得NF=BM.所以S1=HD×BD,

代入可求S1.由点E是边AB上的动点(不与A,B点重合),可得DE垂直AB时DE最小,即,且S2=S△DEF-S1,代入可求S2的取值范围【详解】作EM⊥BC于M,作FN⊥AD于N,∵EM⊥BD,AD⊥BC∴EM∥AD∵△ABC是等腰直角三角形,AD⊥BC,AB=5∴∠B=∠C=45°=∠BAD=∠DAC,BD=CD=AD=∵DF⊥DE∴∠ADF+∠ADE=90°且∠ADE+∠BDE=90°∴∠ADF=∠BDE且AD=BD,∠B=∠DAF=45°∴△ADF≌△BDE,∴AF=BE,DE=DF∴△DEF是等腰直角三角形,∵AF=BE,∠B=∠DAF=45°,∠EMB=∠ANF=90°∴△BME≌△ANF∴NF=BM∵∵点E是边AB上的动点∴∵∴本题考查全等三角形的判定和性质,等腰直角三角形的性质,关键是证△DEF是等腰直角三角形.二、解答题(本大题共3个小题,共30分)24、(1)见详解;(1)【解析】

(1)根据EH∥BC即可证明.(1)如图设AD与EH交于点M,首先证明四边形EFDM是矩形,设正方形边长为x,再利用△AEH∽△ABC,得,列出方程即可解决问题.【详解】(1)证明:∵四边形EFGH是正方形,∴EH∥BC,∴∠AEH=∠B,∠AHE=∠C,∴△AEH∽△ABC.(1)解:如图设AD与EH交于点M.∵∠EFD=∠FEM=∠FDM=90°,∴四边形EFDM是矩形,∴EF=DM,设正方形EFGH的边长为x,∵△AEH∽△ABC,∴,∴,∴x=,∴x1=,∴正方形EFGH的面积为cm1.本题考查正方形的性质、相似三角形的判定和性质等知识,解题的关键是利用相似三角形的相似比对于高的比,学会用方程的思想解决问题,属于中考常考题型.25、当时,函数与的值相等,函数值是.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论