版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省朔州市怀仁市重点中学2025届数学高二上期末检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.一组“城市平安建设”的满意度测评结果,,…,的平均数为116分,则,,…,,116的()A.平均数变小 B.平均数不变C.标准差不变 D.标准差变大2.下列语句为命题的是()A. B.你们好!C.下雨了吗? D.对顶角相等3.已知直线与直线垂直,则实数()A.10 B.C.5 D.4.已知:,直线l:,M为直线l上的动点,过点M作的切线MA,MB,切点为A,B,则四边形MACB面积的最小值为()A.1 B.2C. D.45.在等差数列中,,,则公差A.1 B.2C.3 D.46.设P是抛物线上的一个动点,F为抛物线的焦点.若,则的最小值为()A. B.C.4 D.57.下列命题中是真命题的是()A.“”是“”的充分非必要条件B.“”是“”的必要非充分条件C.在中“”是“”的充分非必要条件D.“”是“”的充要条件8.已知是直线的方向向量,为平面的法向量,若,则的值为()A. B.C.4 D.9.某次生物实验6个小组的耗材质量(单位:千克)分别为1.71,1.58,1.63,1.43,1.85,1.67,则这组数据的中位数是()A.1.63 B.1.67C.1.64 D.1.6510.以轴为对称轴,顶点为坐标原点,焦点到准线的距离为4的抛物线方程是()A. B.C.或 D.或11.已知抛物线的焦点为,准线为,是上一点,是直线与抛物线的一个交点,若,则()A. B.3C. D.212.过原点O作两条相互垂直的直线分别与椭圆交于A、C与B、D,则四边形ABCD面积最小值为()A B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设函数,,对任意的,都有成立,则实数的取值范围是______14.某班有位同学,将他们从至编号,现用系统抽样的方法从中选取人参加文艺演出,抽出的编号从小到大依次排列,若排在第一位的编号是,那么第四位的编号是______15.将连续的正整数填入n行n列的方阵中,使得每行、每列、每条对角线上的数之和相等,可得到n阶幻方.记n阶幻方每条对角线上的数之和为,如图:,那么的值为___________.16.将一枚质地均匀的骰子,先后抛掷次,则出现向上的点数之和为的概率是________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)一款小游戏的规则如下:每盘游戏都需抛掷骰子三次,出现一次或两次“6点”获得15分,出现三次“6点”获得120分,没有出现“6点”则扣除12分(即获得-12分)(Ⅰ)设每盘游戏中出现“6点”的次数为X,求X的分布列;(Ⅱ)玩两盘游戏,求两盘中至少有一盘获得15分概率;(Ⅲ)玩过这款游戏的许多人发现,若干盘游戏后,与最初的分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析解释上述现象18.(12分)已知双曲线C:(a>0,b>0)的离心率为,实轴长为2.(1)求双曲线的焦点到渐近线的距离;(2)若直线y=x+m被双曲线C截得的弦长为,求m的值.19.(12分)如图,PD垂直于梯形ABCD所在的平面,∠ADC=∠BAD=90°,F为PA中点,,.四边形PDCE为矩形,线段PC交DE于点N(1)求证:AC∥平面DEF;(2)求二面角A-BC-P的余弦值20.(12分)已知抛物线的焦点为,直线与抛物线交于,两点,且(1)求抛物线的方程;(2)若,是抛物线上一点,过点的直线与抛物线交于,两点(均与点不重合),设直线,的斜率分别为,,求证:为定值21.(12分)已知分别是椭圆的左、右焦点,点是椭圆上的一点,且的面积为1.(1)求椭圆的短轴长;(2)过原点的直线与椭圆交于两点,点是椭圆上的一点,若为等边三角形,求的取值范围.22.(10分)已知集合,.(1)当时,求AB;(2)设,,若是成立的充分不必要条件,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】利用平均数、方差的定义和性质直接求出,,…,,116的平均数、方差从而可得答案.【详解】,,…,的平均数为116分,则,,…,,116的平均数为设,,…,的方差为则所以则,,…,,116的方差为所以,,…,,116的平均数不变,方差变小.标准差变小.故选:B2、D【解析】根据命题的定义判断即可.【详解】因为能够判断真假的语句叫作命题,所以ABC错误,D正确.故选:D3、B【解析】根据两直线垂直,列出方程,即可求解.【详解】由题意,直线与直线垂直,可得,解得.故选:B.4、B【解析】易知四边形MACB的面积为,然后由最小,根据与直线l:垂直求解.【详解】:化为标准方程为:,由切线长得:,四边形MACB的面积为,若四边形MACB的面积最小,则最小,此时与直线l:垂直,所以,所以四边形MACB面积的最小值,故选:B5、B【解析】由,将转化为表示,结合,即可求解.【详解】,.故选:B.【点睛】本题考查等差数列基本量的计算,属于基础题.6、C【解析】作出图形,过点作抛物线准线的垂线,由抛物线的定义得,从而得出,再由、、三点共线时,取最小值得解.【详解】,所以在抛物线的内部,过点作抛物线准线的垂线,由抛物线的定义得,,当且仅当、、三点共线时,等号成立,因此,的最小值为.故选:C.7、B【解析】根据充分条件、必要条件、充要条件的定义依次判断.【详解】当时,,非充分,故A错.当不能推出,所以非充分,,所以是必要条件,故B正确.当在中,,反之,故为充要条件,故C错;当时,,,,充分条件,因为,当时成立,非必要条件,故D错.故选:B.8、A【解析】由,可得,再计算即可求解.【详解】由题意可知,所以,即.故选:A9、D【解析】将已有数据从小到大排序,根据中位数的定义确定该组数据的中位数.【详解】由题设,将数据从小到大排序可得:,∴中位数为.故选:D.10、C【解析】根据抛物线的概念以及几何性质即可求抛物线的标准方程.【详解】依题意设抛物线方程为因为焦点到准线的距离为4,所以,所以,所以抛物线方程或故选:C11、D【解析】根据抛物线的定义求得,由此求得的长.【详解】过作,垂足为,设与轴交点为.根据抛物线的定义可知.由于,所以,所以,所以,所以.故选:D【点睛】本小题主要考查抛物线定义,考查数形结合的数学思想方法,属于基础题.12、A【解析】直线AC、BD与坐标轴重合时求出四边形面积,与坐标轴不重合求出四边形ABCD面积最小值,再比较大小即可作答.【详解】因四边形ABCD的两条对角线互相垂直,由椭圆性质知,四边形ABCD的四个顶点为椭圆顶点时,而,四边形ABCD的面积,当直线AC斜率存在且不0时,设其方程为,由消去y得:,设,则,,直线BD方程为,同理得:,则有,当且仅当,即或时取“=”,而,所以四边形ABCD面积最小值为.故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】首先求得函数在区间上的最大值,然后分离参数,利用导函数求最值即可确定实数的取值范围.【详解】∵在上恒成立,∴当时,取最大值1,∵对任意的,都有成立,∴在上恒成立,即在上恒成立,令,则,,∵在上恒成立,∴在上为减函数,∵当时,,故当时,取最大值1,故,故答案为【点睛】本题考查的知识点是函数恒成立问题,利用导数研究函数的单调性,利用导数研究函数的最值,难度中档14、29【解析】根据给定信息利用系统抽样的特征直接计算作答.【详解】因系统抽样是等距离抽样,依题意,相邻两个编号相距,所以第四位的编号是.故答案为:2915、34【解析】根据每行数字之和相等,四行数字之和刚好等于1到16之和可得.【详解】4阶幻方中,4行数字之和,得.故答案为:3416、【解析】将向上的点数记作,先计算出所有的基本事件数,并列举出事件“出现向上的点数之和为”所包含的基本事件,然后利用古典概型的概率公式可计算出所求事件的概率.【详解】将骰子先后抛掷次,出现向上的点数记作,则基本事件数为,向上的点数之和为这一事件记为,则事件所包含的基本事件有:、、,共个基本事件,因此,.故答案为:.【点睛】本题考查利用古典概型的概率公式计算概率,解题时一般要列举出相应的基本事件,遵循不重不漏的基本原则,考查计算能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)分布列见解析(Ⅱ)(Ⅲ)见解析【解析】(Ⅰ)先得到可能的取值为,,,,根据每次抛掷骰子,出现“6点”的概率为,得到每种取值的概率,得到分布列;(Ⅱ)计算出每盘游戏没有获得15分的概率,从而得到两盘中至少有一盘获得15分的概率;(Ⅲ)设每盘游戏得分为,得到的分布列和数学期望,从而得到结论.【详解】解:(Ⅰ)可能的取值为,,,.每次抛掷骰子,出现“6点”的概率为.,,,,所以X的分布列为:0123(Ⅱ)设每盘游戏没有得到15分为事件,则.设“两盘游戏中至少有一次获得15分”为事件,则因此,玩两盘游戏至少有一次获得15分的概率为.(Ⅲ)设每盘游戏得分为.由(Ⅰ)知,的分布列为:Y-1215120P的数学期望为.这表明,获得分数的期望为负因此,多次游戏之后分数减少的可能性更大【点睛】本题考查求随机变量的分布列和数学期望,求互斥事件的概率,属于中档题.18、(1)(2)【解析】(1)根据已知计算双曲线的基本量,得双曲线焦点坐标及渐近线方程,再用点到直线距离公式得解.(2)直线方程代入双曲线方程,得到关于的一元二次方程,运用韦达定理弦长公式列方程得解.【小问1详解】双曲线离心率为,实轴长为2,,,解得,,,所求双曲线C的方程为;∴双曲线C的焦点坐标为,渐近线方程为,即为,∴双曲线焦点到渐近线的距离为.【小问2详解】设,,联立,,,,,,解得19、(1)证明见解析;(2).【解析】(1)记PC交DE于点N,然后证明FN∥AC,进而通过线面平行的判定定理证明问题;(2)建立空间直角坐标系,进而通过空间向量夹角公式求得答案.【小问1详解】因为四边形PDCE为矩形,线段PC交DE于点N,所以N为PC的中点连接FN,在△PAC中,F,N分别为PA,PC的中点,所以FN∥AC,因为平面DEF,平面DEF,所以AC∥平面DEF.【小问2详解】因为PD垂直于梯形ABCD所在的平面,∠ADC=∠BAD=90°,所以DA,DC,DP两两垂直,如图以D为原点,分别以DA,DC,DP所在直线为x,y,z轴,建立空间直角坐标系则,,,,所以,设平面PBC的法向量为,则,令x=1,则.因为PD垂直于梯形ABCD所在的平面,所以是平面ABC的一个法向量,所以.由图可知所求二面角为锐角,即所求二面角的余弦值为.20、(1)(2)证明见解析【解析】(1)联立直线和抛物线方程,根据抛物线定义和焦半径公式得到,根据韦达定理可得到最终结果;(2)代入点坐标可得到参数的值,设直线的方程为,联立该直线和抛物线方程,,代入韦达定理可得到最终结果.【小问1详解】设点,,点,,联立,整理得,,由抛物线的定义知,解得,抛物线的方程为【小问2详解】,为抛物线上一点,,即,设,,,,直线的方程为,由,消去得,,,,即为定值21、(1)2(2)【解析】(1)根据题意表示出的面积,即可求得结果;(2)分类讨论直线斜率情况,然后根据是等边三角形,得到,联立直线和椭圆方程,用点的坐标表示上述关系式,化简即可得答案.【小问1详解】因为,所以,又因为,所以,,所以,则椭圆的短轴长为2.【小问2详解】若为等边三角形,应有,即.当直线的斜率不存在时,直线的方程为,且,此时若为等边三角形,则点应为长轴顶点,且,即.当直线的斜率为0时,直线的方程为,且,此时若为等边二角形,则点应为短轴顶点,此时,不为等边三角形.当直线的斜率存在且不为0时,设其方程为,则直
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年土地证抵押贷款协议3篇
- 漯河职业技术学院《化工分离工程》2023-2024学年第一学期期末试卷
- 2024年度施工现场消防通道及安全标志设置服务协议3篇
- 洛阳师范学院《电磁场与电磁波》2023-2024学年第一学期期末试卷
- 洛阳科技职业学院《数字设备与装置》2023-2024学年第一学期期末试卷
- 2024年展会赞助:商业赞助与合作协议3篇
- 2024年度云计算服务具体服务内容合同3篇
- 2024年度专业牛羊养殖场规模化购销合同书3篇
- 临时咖啡师招募合同
- 2024年班组工人劳动安全合同3篇
- 第八次课程改革课件
- 哈尔滨冰雪大世界
- 俄乌战争中的舆论战及其启示
- 2024-2025年第一学期秋季学期少先队活动记录
- 【珠江啤酒公司盈利能力的杜邦分析(7400字论文)】
- 中国特色社会主义课程标准
- 传染科护理敏感指标建立
- 供应人员廉洁从业培训课件
- 《反渗透系统简介》课件
- 误差累积效应及应对机制
- 国家开放大学《建筑工程计量与计价》期末考试题库参考答案
评论
0/150
提交评论