云南省曲靖市宣威五中第八中学2025届数学高一上期末检测试题含解析_第1页
云南省曲靖市宣威五中第八中学2025届数学高一上期末检测试题含解析_第2页
云南省曲靖市宣威五中第八中学2025届数学高一上期末检测试题含解析_第3页
云南省曲靖市宣威五中第八中学2025届数学高一上期末检测试题含解析_第4页
云南省曲靖市宣威五中第八中学2025届数学高一上期末检测试题含解析_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省曲靖市宣威五中第八中学2025届数学高一上期末检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设,,则下面关系中正确的是()A B.C. D.2.为了得到函数的图象,可以将函数的图象A.向右平移 B.向右平移C.向左平移 D.向左平移3.是第四象限角,,则等于A. B.C. D.4.圆与圆的位置关系是()A.内含 B.内切C.相交 D.外切5.圆与圆的位置关系是()A.外切 B.内切C.相交 D.外离6.已知集合,,则中元素的个数是()A. B.C. D.7.的分数指数幂表示为()A. B.C. D.都不对8.已知命题“存在,使得等式成立”是假命题,则实数的取值范围是()A. B.C. D.9.已知函数在上具有单调性,则k的取值范围是()A. B.C. D.10.数列的前项的和为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,则函数零点的个数为_________12.函数的最大值是____________.13.角的终边经过点,则的值为______14.______15.已知函数,那么_________.16.圆在点P(1,)处的切线方程为_____三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某水果经销商决定在八月份(30天计算)销售一种时令水果.在这30天内,日销售量h(斤)与时间t(天)满足一次函数h=t+2,每斤水果的日销售价格l(元)与时间t(天)满足如图所示的对应关系.(Ⅰ)根据提供的图象,求出每斤水果的日销售价格l(元)与时间t(天)所满足的函数关系式;(Ⅱ)设y(元)表示销售水果的日收入(日收入=日销售量×日销售价格),写出y与t的函数关系式,并求这30天中第几天日收入最大,最大值为多少元?18.已知函数(1)求函数最小正周期与单调增区间;(2)求函数在上的最大值与最小值19.设集合.(1)当时,求实数的取值范围;(2)当时,求实数的取值范围.20.已知二次函数,关于x的不等式<0的解集为(1)求实数m、n的值;(2)当时,解关于x的不等式;(3)当是否存在实数a,使得对任意时,关于x的函数有最小值-5.若存在,求实数a值;若不存在,请说明理由21.在四面体B-ACD中,是正三角形,是直角三角形,,.(1)证明:;(2)若E是BD的中点,求二面角的大小.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】根据元素与集合关系,集合与集合的关系判断即可得解.【详解】解:因为,,所以,.故选:D.2、B【解析】先将,进而由平移变换规律可得解.【详解】函数,所以只需将向右平移可得.故选B.【点睛】本题主要考查了三角函数的图像平移变换,解题的关键是将函数名统一,需要利用诱导公式,属于中档题.3、B【解析】由的值及α为第四象限角,利用同角三角函数间的基本关系求出cosα的值,即可确定出的值【详解】由题是第四象限角,则故选B【点睛】此题考查了同角三角函数间的基本关系,熟练掌握基本关系是解本题的关键4、D【解析】根据两圆的圆心距和两半径的和与差的关系判断.【详解】因为圆与圆的圆心距为:两圆的半径之和为:,所以两圆相外切,故选:D5、C【解析】圆心为和,半径为和,圆心距离为,由于,故两圆相交.6、B【解析】根据并集的定义进行求解即可.【详解】由题意得,,显然中元素的个数是5.故选:B7、B【解析】直接由根式化为分数指数幂即可【详解】解:故选:B【点睛】本题考查了根式与分数指数幂的互化,属基础题.8、D【解析】由题意可得,由的范围可得的范围,再求其补集即可求解.【详解】由可得,因为,所以,若命题“存在,使得等式成立”是假命题,则实数的取值范围是,故选:D.9、C【解析】由函数,求得对称轴的方程为,结合题意,得到或,即可求解.【详解】由题意,函数,可得对称轴的方程为,要使得函数在上具有单调性,所以或,解得或故选:C.10、C【解析】根据分组求和可得结果.【详解】,故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】解方程,即可得解.【详解】当时,由,可得(舍)或;当时,由,可得.综上所述,函数零点的个数为.故答案为:.12、【解析】把函数化为的形式,然后结合辅助角公式可得【详解】由已知,令,,,则,所以故答案为:13、【解析】以三角函数定义分别求得的值即可解决.【详解】由角的终边经过点,可知则,,所以故答案为:14、【解析】由指数和对数运算法则直接计算即可.【详解】.故答案为:.15、3【解析】首先根据分段函数求的值,再求的值.【详解】,所以.故答案为:316、x-y+2=0【解析】圆,点在圆上,∴其切线方程为,整理得:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(I);(II)见解析.【解析】(Ⅰ)利用已知条件列出时间段上的函数的解析式即可.(Ⅱ)利用分段函数的解析式求解函数的最值即可【详解】解:(Ⅰ)当0<t≤10,l=30,当10<t≤30时,设函数关系式为l(t)=kt+b,则,解得k=-1,b=40,∴l(t)=-t+40,∴每斤水果的日销售价格l(元)与时间t(天)所满足的函数关系式l(t)=,(Ⅱ)当0≤t≤10,y=30(t+2)=15t+60,当10<t≤30时,y=(t+2)(-t+40)=-t2+18t+80∴y=,当0≤t≤10,y=15t+60为增函数,则ymax=210,当10<t≤30时,y=-t2+18t+80=-(t-18)2+242,当t=18时,ymax=242,综上所述,第18天日收入最大,最大值为242元【点睛】本题考查分段函数的应用,实际问题的处理方法,考查分析问题解决问题的能力.18、(1),单调增区间(2),【解析】(1)利用三角恒等变换化简函数解析式,可得函数的最小正周期与的单调区间;(2)利用整体法求函数的最值.【小问1详解】解:,函数的最小正周期,令,解得,所以单调递增区间为【小问2详解】,,,即,所以,.19、(1)(2)【解析】(1)化简集合A,B,由,得,转化为不等式关系,解之即可;(2)由,得到或,解之即可.试题解析:(1),,,即.(2)法一:,或,即法二:当时,或解得或,于是时,即20、(1);(2)答案见解析;(3)存在,.【解析】(1)利用给定条件结合一元二次不等式与一元二次方程的关系,借助韦达定理计算作答.(2)分类讨论求解一元二次不等式即可作答.(3)换元,借助二次函数在闭区间上最值,计算判断作答.【小问1详解】依题意,不等式的解集是,因此,是关于x的一元二次方程的二根,且,于得,解得,所以实数m、n的值是:.【小问2详解】当时,由(1)知:,当时,,解得:或,当时,解得,当时,不等式化:,解得:,所以,当时,原不等式的解集是,当时,原不等式的解集是,当时,原不等式的解集是.【小问3详解】假设存在实数满足条件,由(1)知,,,因,则设,函数化为:,显然,于是得在上单调递减,当时,,由解得:或(舍去),又,所以存在实数满足条件,.【点睛】易错点睛:解含参数的一元二次不等式,首先注意二次项系数是否含有参数,如果有,必须按二次项系为正、零、负三类讨论求解.21、(1)证明见解析(2)【解析】(1)取AC的中点F,连接DF,BF,由等腰三角形的性质,先证平面BFD,再证;(2)连接FE,由(1)可得,,则即为二面角的平面角,进而求解即可【详解】(1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论