2025届浙江省亳州市高二数学第一学期期末考试模拟试题含解析_第1页
2025届浙江省亳州市高二数学第一学期期末考试模拟试题含解析_第2页
2025届浙江省亳州市高二数学第一学期期末考试模拟试题含解析_第3页
2025届浙江省亳州市高二数学第一学期期末考试模拟试题含解析_第4页
2025届浙江省亳州市高二数学第一学期期末考试模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届浙江省亳州市高二数学第一学期期末考试模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线的一个焦点到它的一条渐近线的距离为,则()A.5 B.25C. D.2.设为坐标原点,抛物线的焦点为,为抛物线上一点.若,则的面积为()A. B.C. D.3.在等差数列中,,,则公差A.1 B.2C.3 D.44.算盘是中国古代的一项重要发明.现有一种算盘(如图1),共两档,自右向左分别表示个位和十位,档中横以梁,梁上一珠拨下,记作数字5,梁下五珠,上拨一珠记作数字1(如图2中算盘表示整数51).如果拨动图1算盘中的两枚算珠,可以表示不同整数的个数为()A.8 B.10C.15 D.165.已知是数列的前项和,,则数列是()A.公比为3的等比数列 B.公差为3的等差数列C.公比为的等比数列 D.既非等差数列,也非等比数列6.椭圆的左右焦点分别为,是上一点,轴,,则椭圆的离心率等于()A. B.C. D.7.已知f(x)是定义在R上的函数,且f(2)=2,,则f(x)>x的解集是()A. B.C. D.8.已知等比数列中,,,则首项()A. B.C. D.09.在圆内,过点的最长弦和最短弦分别是AC和BD,则四边形ABCD的面积为()A. B.C. D.10.已知圆,为圆外的任意一点,过点引圆的两条切线、,使得,其中、为切点.在点运动的过程中,线段所扫过图形的面积为()A. B.C. D.11.在四棱锥中,底面为平行四边形,为边的中点,为边上的一列点,连接,交于,且,其中数列的首项,则()A. B.为等比数列C. D.12.甲、乙两名同学同时从教室出发去体育馆打球(路程相等),甲一半时间步行,一半时间跑步;乙一半路程步行,一半路程跑步.如果两人步行速度、跑步速度均相等,则()A.甲先到体育馆 B.乙先到体育馆C.两人同时到体育馆 D.不确定谁先到体育馆二、填空题:本题共4小题,每小题5分,共20分。13.已知集合,,将中的所有元素按从大到小的顺序排列构成一个数列,则数列的前n项和的最大值为___________.14.已知数列的前项和为,则__________.15.已知数列满足,则的前20项和___________.16.已知为等比数列的前n项和,若,,则_____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知为坐标原点,椭圆:的左、右焦点分别为,,右顶点为,上顶点为,若,,成等比数列,椭圆上的点到焦点的距离的最大值为求椭圆的标准方程;过该椭圆的右焦点作两条互相垂直的弦与,求的取值范围18.(12分)如图,一个湖的边界是圆心为的圆,湖的一侧有一条直线型公路,湖上有桥(是圆的直径).规划在公路上选两个点、,并修建两段直线型道路、.规划要求,线段、上的所有点到点的距离均不小于圆的半径.已知点到直线的距离分别为和(为垂足),测得,,(单位:百米).(1)若道路与桥垂直,求道路的长;(2)在规划要求下,点能否选在处?并说明理由.19.(12分)已知是等差数列,是等比数列,且,,,.(1)求的通项公式;(2)设,求数列的前n项和.20.(12分)如图,在长方体中,,,是棱的中点(1)求证:;(2)求平面与平面夹角的余弦值;(3)在棱上是否存在一点,使得与平面所成角的正弦值为,若存在,求出的长;若不存在,请说明理由21.(12分)已知命题实数满足不等式,命题实数满足不等式.(1)当时,命题,均为真命题,求实数的取值范围;(2)若是的充分不必要条件,求实数的取值范围.22.(10分)在二项式展开式中,第3项和第4项的二项式系数比为.(1)求n的值及展开式中的常数项;(2)求展开式中系数最大的项是第几项.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由渐近线方程得到,焦点坐标为,渐近线方程为:,利用点到直线距离公式即得解【详解】由题意,双曲线故焦点坐标为,渐近线方程为:焦点到它的一条渐近线的距离为:解得:故选:B2、D【解析】先由抛物线方程求出点的坐标,准线方程为,再由可求得点的横坐标为4,从而可求出点的纵坐标,进而可求出的面积【详解】由题意可得点的坐标,准线方程为,因为为抛物线上一点,,所以点的横坐标为4,当时,,所以,所以的面积为,故选:D3、B【解析】由,将转化为表示,结合,即可求解.【详解】,.故选:B.【点睛】本题考查等差数列基本量的计算,属于基础题.4、A【解析】根据给定条件分类探求出拨动两枚算珠的结果计算得解.【详解】拨动图1算盘中的两枚算珠,有两类办法,由于拨动一枚算珠有梁上、梁下之分,则只在一个档拨动两枚算珠共有4种方法,在每一个档各拨动一枚算珠共有4种方法,由分类加法计数原理得共有8种方法,所以表示不同整数的个数为8.故选:A5、D【解析】由得,然后利用与的关系即可求出【详解】因为,所以所以当时,时,所以故数列既非等差数列,也非等比数列故选:D【点睛】要注意由求要分两步:1.时,2.时.6、A【解析】在中结合已知条件,用焦距2c表示、,再利用椭圆定义计算作答.【详解】令椭圆的半焦距为c,因是上一点,轴,,在中,,,由椭圆定义知,则,所以椭圆的离心率等于.故选:A7、D【解析】构造,结合已知有在R上递增且,原不等式等价于,利用单调性求解集.【详解】令,由题设知:,即在R上递增,又,所以f(x)>x等价于,即.故选:D8、B【解析】设等比数列的公比为q,根据等比数列的通项公式,列出方程组,即可求得,进而可求得答案.【详解】设等比数列公比为q,则,解得,所以.故选:B9、D【解析】由题,求得圆的圆心和半径,易知最长弦,最短弦为过点与垂直的弦,再求得BD的长,可得面积.【详解】圆化简为可得圆心为易知过点的最长弦为直径,即而最短弦为过与垂直的弦,圆心到的距离:所以弦所以四边形ABCD的面积:故选:D10、D【解析】连接、、,分析可知四边形为正方形,求出点的轨迹方程,分析可知线段所扫过图形为是夹在圆和圆的圆环,利用圆的面积公式可求得结果.【详解】连接、、,由圆的几何性质可知,,又因为且,故四边形为正方形,圆心,半径为,则,故点的轨迹方程为,所以,线段扫过的图形是夹在圆和圆的圆环,故在点运动的过程中,线段所扫过图形的面积为.故选:D.11、A【解析】由得,为边的中点得,设,所以,根据向量相等可判断A选项;由得是公比为的等比数列,可判断B选项;代入可判断C选项;当时可判断D选项.【详解】由得,因为为边的中点,所以,所以设,所以,所以,当时,A选项正确;,由得,是公比为的等比数列,所以,所以,所以,不是常数,故B选项错误;所以,由得,故C选项错误;当时,,所以,此时为的中点,与重合,即,,故D错误.故选:A.12、A【解析】设出总路程与步行速度、跑步速度,表示出两人所花时间后比较不等式大小【详解】设总路程为,步行速度,跑步速度对于甲:,得对于乙:,当且仅当时等号成立,而,故,乙花时间多,甲先到体育馆故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由题意设,,根据可得,从而,即可得出答案.【详解】设,由,得,由,得中的元素满足,即,可得所以,由,所以所以,要使得数列的前n项和的最大值,即求出数列中所以满足的项的和即可.即,得,则所以数列的前n项和的最大值为故答案为:147214、【解析】根据题意求得,得到,利用等差数列的求和公式,求得,结合裂项法求和法,即可求解.【详解】由,可得,即,因为,所以,又因为,所以,可得,所以,所以.故答案为:.15、135【解析】直接利用数列的递推关系式写出相邻四项之和,进而求出数列的和.【详解】数列满足,所以,故,当时,,当时,,,当时,,所以.故答案为:135.16、30【解析】根据等比数列性质得,,也成等比,即可求得结果.【详解】由等比数列的性质可知,,,构成首项为10,公比为1的等比数列,所以【点睛】本题考查等比数列性质,考查基本求解能力,属基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】根据,,成等比数列,椭圆上的点到焦点的距离的最大值为.列出关于、、的方程组,求出、的值,即可得出椭圆的方程;对直线和分两种情况讨论:一种是两条直线与坐标轴垂直,可求出两条弦长度之和;二是当两条直线斜率都存在时,设直线的方程为,将直线方程与椭圆方程联立,列出韦达定理,利用弦长公式可计算出的长度的表达式,然后利用相应的代换可求出的长度表达式,将两线段长度表达式相加,利用函数思想可求出两条弦长的取值范围最后将两种情况的取值范围进行合并即可得出答案【详解】易知,得,则,而,又,得,,因此,椭圆C的标准方程为;当两条直线中有一条斜率为0时,另一条直线的斜率不存在,由题意易得;当两条直线斜率都存在且不为0时,由知,设、,直线MN的方程为,则直线PQ的方程为,将直线方程代入椭圆方程并整理得:,显然,,,,同理得,所以,,令,则,,设,,所以,,所以,,则综合可知,的取值范围是【点睛】本题主要考查待定系数法求椭圆方程及圆锥曲线求范围,属于难题.解决圆锥曲线中的范围问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将圆锥曲线中范围问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法求解.18、(1)15(百米)(2)点选在处不满足规划要求,理由见解析【解析】(1)建立适当的坐标系,得圆及直线的方程,进而得解.(2)不妨点选在处,求方程并求其与圆的交点,在线段上取点不符合条件,得结论.【小问1详解】如图,过作,垂足为.以为坐标原点,直线为轴,建立平面直角坐标系.因为为圆的直径,,所以圆的方程为.因为,,所以,故直线的方程为,则点,的纵坐标分别为3,从而,,直线的斜率为.因为,所以直线的斜率为,直线的方程为.令,得,,所以.因此道路的长为15(百米).【小问2详解】若点选在处,连结,可求出点,又,所以线段.由解得或,故不妨取,得到在线段上的点,因为,所以线段上存在点到点的距离小于圆的半径5.因此点选在处不满足规划要求.19、(1)(2)【解析】(1)设是公差为d的等差数列,是公比为q的等比数列,运用通项公式可得,,进而得到所求通项公式;(2)求得,再由数列的求和方法:分组求和,运用等差数列和等比数列的求和公式,计算即可得到所求和.【小问1详解】解:(1)设是公差为d的等差数列,是公比为q的等比数列,由,,可得,;即有,,则,则;【小问2详解】解:,则数列的前n项和为.20、(1)证明见解析(2)(3)存点,【解析】(1)先证明平面,由平面,可证明结论.(2)以分别为轴,建立空间直角坐标系,分别求出平面与平面的法向量,利用向量法求求解即可.(3)设,,则,则由向量法结合条件可得答案.【详解】(1)在长方体中,,又,所以平面又平面,所以.(2)以分别为轴,建立空间直角坐标系因为,,是棱的中点则则为平面的一个法向量.设为平面的一个法向量.,所以,即取,可得所以如图平面与平面夹角为锐角,所以平面与平面夹角的余弦值为.(3)设,,则由(2)平面的一个法向量设与平面所成角为则解得,取所以存在点,满足条件.21、(1);(2).【解析】(1)分别求出命题,均为真命题时的取值范围,再求交集即可.(2)利用集合间的关系求解即可.【详解】实数满足不等式,即命题实数满足不等式,即(1)当时,命题,均为真命题,则且则实数的取值范围为;(2)若是的充分不必要条件,则是的真子集则且解得故的取值范围为.【点睛】判断充分条件与必要条件应注意:首先弄清条件和结论分别是什么,然后直接依据定义、定理、性质尝试.对于带有否定性的命题或比较难判断的命题,除借助集合思想化抽象为直观外

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论