




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省徐州市铜山区2025届高一数学第一学期期末质量跟踪监视模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数零点所在的大致区间的A. B.C. D.2.已知向量,若,则()A.1或4 B.1或C.或4 D.或3.下列函数中,同时满足:①在上是增函数,②为奇函数,③最小正周期为的函数是()A. B.C. D.4.已知函数,若的最小正周期为,则的一条对称轴是(
)A. B.C. D.5.已知集合,则()A.0或1 B.C. D.或6.某几何体的三视图如图所示(图中小正方形网格的边长为),则该几何体的体积是A. B.C. D.7.圆(x-1)2+(y-1)2=1上的点到直线x-y=2的距离的最大值是()A.2 B.1+C.2+ D.1+8.要得到函数的图象,只需将函数的图象A.向左平移个单位 B.向右平移个单位C.向左平移个单位 D.向右平移个单位9.直线l:ax+y﹣3a=0与曲线y有两个公共点,则实数a的取值范围是A.[,] B.(0,)C.[0,) D.(,0)10.下列向量的运算中,正确的是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知为角终边上一点,且,则______12.已知点是角终边上任一点,则__________13.函数的单调递减区间为_______________.14.已知函数在上单调递减,则实数的取值范围是______15.在某高传染性病毒流行期间,为了建立指标显示疫情已受控制,以便向该地区居民显示可以过正常生活,有公共卫生专家建议的指标是“连续7天每天新增感染人数不超过5人”,根据连续7天的新增病例数计算,下列各个选项中,一定符合上述指标的是__________(填写序号)①平均数;②标准差;③平均数且极差小于或等于2;④平均数且标准差;⑤众数等于1且极差小于或等于416.已知函数(为常数)的一条对称轴为,若,且满足,在区间上是单调函数,则的最小值为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.(1)求函数的解析式;(2)试判断函数在区间上的单调性,并用函数单调性定义证明;(3)当时,函数恒成立,求实数m的取值范围18.已知函数(其中且)是奇函数.(1)求的值;(2)若对任意的,都有不等式恒成立,求实数的取值范围.19.我们知道,函数的图象关于坐标原点成中心对称图形的充要条件是函数为奇函数,有同学发现可以将其推广为:函数的图象关于点成中心对称图形的充要条件是函数为奇函数.已知(1)利用上述结论,证明:的图象关于成中心对称图形;(2)判断的单调性(无需证明),并解关于x的不等式20.设函数f(x)=(x>0)(1)作出函数f(x)的图象;(2)当0<a<b,且f(a)=f(b)时,求+的值;(3)若方程f(x)=m有两个不相等的正根,求m的取值范围21.如图,在平面直角坐标系中,点为单位圆与轴正半轴的交点,点为单位圆上的一点,且,点沿单位圆按逆时针方向旋转角后到点.(1)当时,求的值;(2)设,求的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】函数是单调递增函数,则只需时,函数在区间(a,b)上存在零点.【详解】函数,x>0上单调递增,,函数f(x)零点所在的大致区间是;故选B【点睛】本题考查利用函数零点存在性定义定理求解函数的零点的范围,属于基础题;解题的关键是首先要判断函数的单调性,再根据零点存在的条件:已知函数在(a,b)连续,若确定零点所在的区间.2、B【解析】根据向量的坐标表示,以及向量垂直的条件列出方程,即可求解.【详解】由题意,向量,可得,因为,则,解得或.故选:B.3、D【解析】根据三角函数的图像和性质逐项分析即可求解.【详解】A中的最小正周期为,不满足;B中是偶函数,不满足;C中的最小正周期为,不满足;D中是奇函数﹐且周期,令,∴,∴函数的递增区间为,,∴函数在上是增函数,故D正确.故选:D.4、C【解析】由最小正周期公式有:,函数的解析式为:,函数的对称轴满足:,令可得的一条对称轴是.本题选择C选项.5、D【解析】由集合的概念可知方程只有一个解,且解为,分为二次项系数为0和不为0两种情形,即可得结果.【详解】因为为单元素集,所以方程只有一个解,且解为,当时,,此时;当时,,即,此时,故选:D.6、A【解析】利用已知条件,画出几何体的直观图,利用三视图的数据求解几何体的体积即可【详解】由题意可知几何体的直观图如图:是直四棱柱,底面是直角梯形,上底为:1,下底为2,高为2,棱柱的高为2,几何体的体积为:V6故选A【点睛】本题考查几何体的直观图与三视图的关系,考查空间想象能力以及计算能力7、B【解析】根据圆心到直线的距离加上圆的半径即为圆上点到直线距离的最大值求解出结果.【详解】因为圆心为,半径,直线的一般式方程为,所以圆上点到直线的最大距离为:,故选:B【点睛】本题考查圆上点到直线的距离的最大值,难度一般.圆上点到直线的最大距离等于圆心到直线的距离加上圆的半径,最小距离等于圆心到直线的距离减去半径.8、C【解析】化函数解析式为,再由图象平移的概念可得【详解】解要得到函数的图象,只需将函数的图象向左平移个单位,即:故选C【点睛】本题考查函数图象平移变换,要注意的左右平移变换只针对自变量加减,即函数的图象向左平移个单位,得图象的解析式为9、C【解析】根据直线的点斜式方程可得直线过定点,曲线表示以为圆心,1为半径的半圆,作出图形,利用数形结合思想求出两个极限位置的斜率,即可得解.【详解】直线,即斜率为且过定点,曲线为以为圆心,1为半径的半圆,如图所示,当直线与半圆相切,为切点时(此时直线的倾斜角为钝角),圆心到直线的距离,,解得,当直线过原点时斜率,即,则直线与半圆有两个公共点时,实数的取值范围为:[0,),故选:C【点睛】本题主要考查圆的方程与性质,直线与圆的位置关系,考查了数形结合思想的应用,属于中档题.10、C【解析】利用平面向量的三角形法则进行向量的加减运算,即可得解.【详解】对于A,,故A错误;对于B,,故B错误;对于C,,故C正确;对于D,,故D错误.故选:C.【点睛】本题考查平面向量的三角形法则,属于基础题.解题时,要注意向量的起点和终点.二、填空题:本大题共6小题,每小题5分,共30分。11、##【解析】利用三角函数定义可得:,即可求得:,再利用角的正弦、余弦定义计算得解【详解】由三角函数定义可得:,解得:,则,所以,,.故答案为:.12、##【解析】将所求式子,利用二倍角公式和平方关系化为,然后由商数关系弦化切,结合三角函数的定义即可求解.【详解】解:因为点是角终边上任一点,所以,所以,故答案为:.13、【解析】由题得,利用正切函数的单调区间列出不等式,解之即得.【详解】由题意可知,则要求函数的单调递减区间只需求的单调递增区间,由得,所以函数的单调递减区间为.故答案为:.14、【解析】根据指数函数与二次函数的单调性,以及复合函数的单调性的判定方法,求得在上单调递增,在区间上单调递减,再结合题意,即可求解.【详解】令,可得抛物线的开口向上,且对称轴为,所以函数在上单调递减,在区间上单调递增,又由函数,根据复合函数的单调性的判定方法,可得函数在上单调递增,在区间上单调递减,因为函数在上单调递减,则,可得实数的取值范围是.故答案:.15、③⑤【解析】按照平均数、极差、方差依次分析各序号即可.【详解】连续7天新增病例数:0,0,0,0,2,6,6,平均数是2<3,①错;连续7天新增病例数:6,6,6,6,6,6,6,标准差是0<2,②错;平均数且极差小于或等于2,单日最多增加4人,若有一日增加5人,其他天最少增加3人,不满足平均数,所以单日最多增加4人,③对;连续7天新增病例数:0,3,3,3,3,3,6,平均数是3且标准差小于2,④错;众数等于1且极差小于或等于4,最大数不会超过5,⑤对.故答案为:③⑤.16、【解析】根据是的对称轴可取得最值,即可求出的值,进而可得的解析式,再结合对称中心的性质即可求解.【详解】因为是的对称轴,所以,化简可得:,即,所以,有,,可得,,因为,且满足,在区间上是单调函数,又因为对称中心,所以,当时,取得最小值.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)单调递减;(3)【解析】(1)函数为奇函数,则,再用待定系数法即可求出;(2)作差法:任意的两个实数,证明出;(3)要使则试题解析:(1)所以(2)由(1)问可得在区间上是单调递减的证明:设任意的两个实数又,,在区间上是单调递减的;(3)由(2)知在区间上的最小值是要使则考点:1、待定系数法;2、函数的单调性;3、不等式恒成立问题.18、(1)(2)【解析】(1)根据恒成立,计算可得的值;(2)将不等式恒成立转化为在上恒成立,令,则转化为,利用对勾函数的性质求得的最大值即可.【小问1详解】因为函数(其中且)是奇函数,,即恒成立,即恒成立,所以恒成立,整理得恒成立,,解得或,当时,显然不成立,当时,,由,可得或,,满足是奇函数,所以;【小问2详解】对任意的,都有不等式恒成立,恒成立,即在上恒成立,即在上恒成立,令,令,,根据对勾函数的性质可得在上单调递减,在上单调递增,又,,所以在上的最大值为,,即实数取值范围是19、(1)证明见解析(2)为单调递减函数,不等式的解集见解析.【解析】(1)利用已知条件令,求出的解析式,利用奇函数的定义判断为奇函数,即可得证;(2)由(1)得,原不等式变成,利用函数单调性化为含有参数的一元二次不等式,求解即可.【小问1详解】证明:∵,令,∴,即,又∵,∴为奇函数,有题意可知,的图象关于成中心对称图形;【小问2详解】易知函数为单调递增函数,且对于恒成立,则函数在上为单调递减函数,由(1)知,的图象关于成中心对称图形,即,不等式得:,即,则,整理得,当时,不等式的解集为;当时,不等式的解集为;当时,不等式的解集为.20、(1)见解析;(2)2;(3)见解析.【解析】(1)将函数写成分段函数,先作出函,再将x轴下方部分翻折到轴上方即可得到函数图象;(2)根据函数的图象,可知在上是减函数,而在上是增函数,利用b且,即可求得的值;(3)构造函数,由函数的图象可得结论【详解】(1)如图所示(2)∵f(x)==故f(x)在(0,1]上是减函数,而在(1,+∞)上是增函数由0<a<b且f(a)=f(b),得0<a<1<b,且-1=1-,∴+
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 河北期末考试物理试题及答案
- 物理高频试题大全及答案
- 工程事务面试题库及答案
- 玉米制种知识试题及答案
- 武陟中医院面试题及答案
- 人格转换者测试题及答案
- 宣传措施面试题目及答案
- 依规治党面试题及答案
- 消防行业工作人员安全与卫生措施
- 一年级书法家访交流计划
- 2024年江苏省常熟市事业单位公开招聘教师岗考试题带答案分析
- 2025-2030中国学生单人蚊帐行业发展分析及发展趋势与投资战略研究报告
- 2025年青浦区区管企业统一招聘55人笔试参考题库附带答案详解
- 核电站辐射防护法规标准国际比较-洞察阐释
- 接处警规范化操作培训体系
- 2025年中考语文作文终极押题(附范文5篇)
- 水利水电工程科技创新与试题及答案
- 抗凝药术前停用的指南
- 储能集装箱项目可行性研究报告(模板)
- 数控车工考试试题及答案
- 餐厅食品安全培训知识
评论
0/150
提交评论