




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届河北省鹿泉一中、元氏一中、正定一中等五校高一数学第一学期期末经典试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线后人称之为三角形的欧拉线.已知的顶点,若其欧拉线方程为,则顶点C的坐标是A. B.C. D.2.已知,,,则a、b、c的大小关系是()A. B.C. D.3.已知函数的定义域为,若是奇函数,则A. B.C. D.4.已知定义域为的奇函数满足,若方程有唯一的实数解,则()A.2 B.4C.8 D.165.已知是两条不同直线,是三个不同平面,下列命题中正确的是()A.若则 B.若则C.若则 D.若则6.已知三棱锥S﹣ABC的所有顶点都在球O的球面上,SA⊥平面ABC,AB⊥BC且AB=BC=1,SA=,则球O的表面积是()A. B.C. D.7.已知y=(x-m)(x-n)+2022(m<n),且α,β(α<β)是方程y=0的两根,则α,β,m,n的大小关系是()A.α<m<n<β B.m<α<n<βC.m<α<β<n D.α<m<β<n8.设R,则“>1”是“>1”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件9.已知角的终边经过点,则A. B.C. D.10.设非零向量、、满足,,则向量、的夹角()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数,函数有______个零点,若函数有三个不同的零点,则实数的取值范围是______.12.已知扇形的半径为4,圆心角为,则扇形的面积为___________.13.经过两条直线和的交点,且垂直于直线的直线方程为__________14.为了得到函数的图象,可以将函数的图象向右平移_________个单位长度而得15.已知定义域为的奇函数,则的解集为__________.16.已知圆心角为的扇形的面积为,则该扇形的半径为____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数的部分图象如图所示(1)求的解析式;(2)将图象上所有点的横坐标缩短为原来的(纵坐标不变),再将所得图象向右平移个单位长度,得到函数的图象.若在区间上不单调,求的取值范围18.已知函数且图象经过点(1)求实数的值;(2)若,求实数的取值范围.19.已知角的顶点在坐标原点,始边与x轴非负半轴重合,终边经过点.(1)求的值;(2)求的值.20.已知M(1,﹣1),N(2,2),P(3,0).(1)求点Q的坐标,满足PQ⊥MN,PN∥MQ.(2)若点Q在x轴上,且∠NQP=∠NPQ,求直线MQ的倾斜角.21.已知直线经过直线与的交点.(1)点到直线的距离为3,求直线的方程;(2)求点到直线的距离的最大值,并求距离最大时的直线的方程
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】设C的坐标,由重心坐标公式求重心,代入欧拉线得方程,求出AB的垂直平分线,联立欧拉线方程得三角形外心,外心到三角形两顶点距离相等可得另一方程,两方程联立求得C点的坐标.【详解】设C(m,n),由重心坐标公式得重心为,代入欧拉线方程得:①AB的中点为,,所以AB的中垂线方程为联立,解得所以三角形ABC的外心为,则,化简得:②联立①②得:或,当时,BC重合,舍去,所以顶点C的坐标是故选A.【点睛】本题主要考查了直线方程的各种形式,重心坐标公式,属于中档题.2、D【解析】借助中间量比较即可.详解】解:根据题意,,,,所以故选:D3、D【解析】由为奇函数,可得,求得,代入计算可得所求值【详解】是奇函数,可得,且时,,可得,则,可得,则,故选D【点睛】本题考查函数的奇偶性的判断和运用,考查定义法和运算能力,属于基础题4、B【解析】由条件可得,为周期函数,且一个周期为6,设,则得到偶函数,由有唯一的实数解,得有唯一的零点,则,从而得到答案.【详解】由得,即,从而,所以为周期函数,且一个周期为6,所以.设,将的图象向右平移1个单位长度,可得到函数的图象,且为偶函数.由有唯一的实数解,得有唯一的零点,从而偶函数有唯一的零点,且零点为,即,即,解得,所以故选:.【点睛】关键点睛:本题考查函数的奇偶性和周期性的应用,解答本题的关键是由条件得到,得到为周期函数,设的图象,且为偶函数.由有唯一的实数解,得有唯一的零点,从而偶函数有唯一的零点,且零点为,属于中档题.5、D【解析】A项,可能相交或异面,当时,存在,,故A项错误;B项,可能相交或垂直,当
时,存在,,故B项错误;C项,可能相交或垂直,当
时,存在,,故C项错误;D项,垂直于同一平面的两条直线相互平行,故D项正确,故选D.本题主要考查的是对线,面关系的理解以及对空间的想象能力.考点:直线与平面、平面与平面平行的判定与性质;直线与平面、平面与平面垂直的判定与性质.6、A【解析】如图,三棱锥S-ABC的所有顶点都在球O的球面上,∵SA⊥平面ABC,SA=,AB⊥BC且AB=BC=1,∴AC=∴SA⊥AC,SB⊥BC,SC=∴球O的半径R==1∴球O的表面积S=4πR2=4π故选A点睛:本题考查球的表面积的求法,合理地作出图形,确定球心,求出球半径是解题的关键7、C【解析】根据二次函数的性质判断【详解】记,由题意,,的图象是开口向上的抛物线,所以上递减,在上递增,又,,所以,,即(也可由的图象向下平移2022个单位得的图象得出判断)故选:C8、A【解析】由可得成立,反之不成立,所以“”是“”的充分不必要条件考点:充分条件与必要条件9、D【解析】由任意角的三角函数定义列式求解即可.【详解】由角终边经过点,可得.故选D.【点睛】本题主要考查了任意角三角函数的定义,属于基础题.10、B【解析】根据已知条件,应用向量数量积的运算律可得,由得,即可求出向量、的夹角.【详解】由题意,,即,∵,∴,则,又,∴.故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、①.1②.【解析】(1)画出图像分析函数的零点个数(2)条件转换为有三个不同的交点求实数的取值范围问题,数形结合求解即可.【详解】(1)由题,当时,,当时,为二次函数,对称轴为,且过开口向下.故画出图像有故函数有1个零点.又有三个不同的交点则有图像有最大值为.故.故答案为:(1).1(2).【点睛】本题主要考查了数形结合求解函数零点个数与根据零点个数求参数范围的问题,属于中档题.12、【解析】先计算扇形的弧长,再利用扇形的面积公式可求扇形的面积【详解】根据扇形的弧长公式可得,根据扇形的面积公式可得故答案为:13、【解析】联立方程组求得交点的坐标为,根据题意求得所求直线的斜率为,结合点斜式可得所求直线的方程.【详解】联立方程组,得交点,因为所求直线垂直于直线,故所求直线的斜率,由点斜式得所求直线方程为,即.故答案为:.14、(答案不唯一);【解析】由于,再根据平移求解即可.【详解】解:由于,故将函数的图象向右平移个单位长度可得函数图像.故答案为:15、【解析】根据奇函数的性质及定义域的对称性,求得参数a,b的值,求得函数解析式,并判断单调性.等价于,根据单调性将不等式转化为自变量的大小关系,结合定义域求得解集.【详解】由题知,,则恒成立,即,,又定义域应关于原点对称,则,解得,因此,,易知函数单增,故等价于即,解得故答案为:16、4【解析】由扇形的面积公式列方程即可求解.【详解】扇形的面积,即,解得:.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)利用最值求出,根据得出,再由特殊值求出即可求解.(2)根据三角函数的图象变换得出,再由正弦函数在上单调即可求解.【详解】解:(1)由图可知,最小正周期,所以因为,所以,,,又,所以,故(2)由题可知,当时,因为在区间上不单调,所以,解得故的取值范围为18、(1)3(2)【解析】(1)利用求得.(2)结合指数函数的单调性求得实数的取值范围.【小问1详解】依题意且,【小问2详解】在R上是增函数且所求的取值范围是19、(1);(2)8.【解析】(1)根据三角函数的定义即可求得答案;(2)根据三角函数的定义求出,然后用诱导公式将原式化简,进而进行弦化切,最后求出答案.【小问1详解】由题意,,所以.【小问2详解】由题意,,则原式.20、(1)(2)【解析】(1)设Q(x,y),根据PQ⊥MN得出,然后由PN∥MQ得出,解方程组即可求出Q的坐标;(2)设Q(x,0)由∠NQP=∠NPQ得出kNQ=﹣kNP,解方程求出Q的坐标,然后即可得出结果.【小问1详解】设Q(x,y),由已知得kMN=3,又PQ⊥MN,可得kMN×kPQ=﹣1即(x≠3)①由已知得kPN=﹣2,又PN∥MQ,可得kPN=kMQ,即(x≠1)②联立①②求解得x=0,y=1,∴Q(0,1);【小问2详解】设Q(x,0),∵∠NQP=∠NPQ,∴kNQ=﹣kNP,又∵kNQ,kNP=﹣2,∴2解得x=1,∴Q(1,0),又∵M(1,﹣1),∴MQ⊥x轴,故直线MQ的倾斜角为90°.21、(1)x=2或4x-3y-5=0(2)见解析【解析】(1)设过两直线的交点的直线系方程,再根据点到直线的距离公式,求出的值,得出直线的方程;(2)先求出交点P的坐标,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 智能医疗设备研发制造协议
- 建筑结构设计与施工技术知识小结卷
- 农户与农场主合作协议
- 市场营销消费者行为学模拟题卷设计思路解析
- 销售代理委托协议及佣金支付
- 软件开发测试与验收交付协议
- 低空经济时代的商业广告与传播方式创新
- DB14-T 3411-2025 草种质资源普查技术规程
- 建筑机器人技术的应用现状与未来发展潜力
- 互联网游戏服务合同
- DB13(J)-T 8496-2022 城市污水处理厂提标改造技术标准
- 地铁保安服务应急预案
- 建筑施工临时用电安全教育培训课件
- 早产儿肠内营养管理专家共识2024年解读
- 隔音砂浆销售合同协议
- 2025-2030全球及中国GPON技术行业市场现状供需分析及投资评估规划分析研究报告
- 2024年浙江高考化学真题(1月)试题试卷原卷答案解析
- 二年级下册数学-认识钟表练习题合集
- 2025-2030中国IDC行业发展趋势与前景展望战略研究报告
- 房车租赁合同协议
- 2025年普通高等学校招生全国统一考试语文试卷答案
评论
0/150
提交评论