版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省开封市五县联考2025届高二上数学期末综合测试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知数列{}满足,且,若,则=()A.-8 B.-11C.8 D.112.过点且斜率为的直线方程为()A. B.C D.3.如图,在四面体中,,,两两垂直,已知,,则直线与平面所成角的正弦值为()A. B.C. D.4.某软件研发公司对某软件进行升级,主要是对软件程序中的某序列重新编辑,编辑新序列为,它的第项为,若序列的所有项都是1,且,.记数列的前项和、前项积分别为,,若,则的最小值为()A.2 B.3C.4 D.55.直线的一个方向向量为,则它的斜率为()A. B.C. D.6.已知向量为平面的法向量,点在内,点在外,则点到平面的距离为()A. B.C. D.7.数列满足,,则()A. B.C. D.28.一动圆与两圆x2+y2=1和x2+y2﹣8x+12=0都外切,则动圆圆心轨迹为()A.圆 B.椭圆C.双曲线的一支 D.抛物线9.已知动圆M与直线y=2相切,且与定圆C:外切,求动圆圆心M的轨迹方程A. B.C. D.10.已知数列满足,,,前项和()A. B.C. D.11.已知是定义在上的函数,且对任意都有,若函数的图象关于点对称,且,则()A. B.C. D.12.椭圆的焦点为F1,F2,点P在椭圆上,若|PF1|=4,则∠F1PF2的余弦值为A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知是定义在上的奇函数,当时,则当时___________.14.如图,四边形为直角梯形,且,为正方形,且平面平面,,,,则______,直线与平面所成角的正弦值为______15.已知直线与平行,则实数的值为_____________.16.已知,,则___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知是等差数列的前n项和,且,(1)求数列的通项公式;(2)令,求数列的前n项和18.(12分)如图,在三棱锥中,,,为的中点.(1)求证:平面;(2)若点在棱上,且,求点到平面的距离.19.(12分)已知满足,.(1)求证:是等差数列,求的通项公式;(2)若,的前项和是,求证:.20.(12分)已知抛物线的焦点是椭圆的一个焦点,直线交抛物线E于两点(1)求E的方程;(2)若以BC为直径的圆过原点O,求直线l的方程21.(12分)已知,,且,求实数的取值范围.22.(10分)在锐角中,角的对边分别为,满足.(1)求;(2)若的面积为,求的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】利用递推关系,结合取值,求得即可.【详解】因为,且,,故可得,解得(舍),;同理求得,,.故选:C.2、B【解析】利用点斜式可得出所求直线的方程.【详解】由题意可知所求直线的方程为,即.故选:B.3、D【解析】利用三线垂直建立空间直角坐标系,将线面角转化为直线的方向向量和平面的法向量所成的角,再利用空间向量进行求解.【详解】以,,所在直线为轴,轴,轴建立空间直角坐标系(如图所示),则,,,,,设平面的一个法向量为,则,即,令,则,,所以平面的一个法向量为;设直线与平面所成角为,则,即直线与平面所成角的正弦值为.故选:D.4、C【解析】先利用序列的所有项都是1,得到,整理后得到是等比数列,进而求出公比和首项,从而求出和,利用,列出不等式,求出,从而得到的最小值【详解】因为,,所以,又序列的所有项都是1,所以它的第项,所以,所以数列是等比数列,又,,所以公比,.所以,,,要,即,即,所以,所以,,所以最小值为4.故选:C.5、A【解析】根据的方向向量求得斜率.【详解】且是直线的方向向量,.故选:A6、A【解析】先求出向量,再利用空间向量中点到平面的距离公式即可求解.【详解】解:由题知,点在内,点在外,所以又向量为平面的法向量所以点到平面的距离为:故选:A.7、C【解析】根据已知分析数列周期性,可得答案【详解】解:∵数列满足,,∴,,,,故数列以4为周期呈现周期性变化,由,故,故选C【点睛】本题考查的知识点是数列的递推公式,数列的周期性,难度中档8、C【解析】设动圆圆心,与两圆x2+y2=1和x2+y2﹣8x+12=0都外切,列出几何关系式,化简,再根据圆锥曲线的定义,可得到动圆圆心轨迹.【详解】设动圆圆心,半径为,圆x2+y2=1的圆心为,半径为,圆x2+y2﹣8x+12=0,得,则圆心,半径为,根据圆与圆相切,则,,两式相减得,根据定义可得动圆圆心轨迹为双曲线的一支.故选:C【点睛】本题考查了两圆的位置关系,圆锥曲线的定义,属于基础题.9、D【解析】由题意动圆M与直线y=2相切,且与定圆C:外切∴动点M到C(0,-3)的距离与到直线y=3的距离相等由抛物线的定义知,点M的轨迹是以C(0,-3)为焦点,直线y=3为准线的抛物线故所求M的轨迹方程为考点:轨迹方程10、C【解析】根据,利用对数运算得到,再利用等比数列的前n项和公式求解.【详解】解:因为,所以,则,所以数列是以为首项,为公比的等比数列,所以,故选:C11、D【解析】令,代入可得,即得,再由函数的图象关于点对称,判断得函数的图象关于点对称,即,则化简可得,即函数的周期为,从而代入求解.【详解】令,得,即,所以,因为函数的图象关于点对称,所以函数的图象关于点对称,即,所以,即,可得,则,故选:D.第II卷(非选择题12、B【解析】根据题意,椭圆的标准方程为,其中则,则有|F1F2|=2,若a=3,则|PF1|+|PF2|=2a=6,又由|PF1|=4,则|PF2|=6-|PF1|=2,则cos∠F1PF2==.故选B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】当时,利用及求得函数的解析式.【详解】当时,,由于函数是奇函数,故.【点睛】本小题主要考查已知函数的奇偶性以及轴一侧的解析式,求另一侧的解析式,属于基础题.14、①..②..【解析】以点为坐标原点,,,所在直线分别为轴,轴,轴建立空间直角坐标系,根据空间向量的线性运算求得向量的坐标,由此求得,由线面角的空间向量求解方法求得答案.【详解】解:以点为坐标原点,,,所在直线分别为轴,轴,轴建立空间直角坐标系(如下图所示)由题意可知,,,因为,,所以,故设平面的法向量为,则,令,得因为,所以直线与平面所成角的正弦值为故答案为:;.15、或【解析】根据平行线的性质进行求解即可.【详解】因为直线与平行,所以有:或,故答案为:或16、5【解析】根据空间向量的数量积运算的坐标表示运算求解即可.【详解】解:因为,,所以.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)设等差数列的首项、公差,由列出关于首项、公差的方程组,解方程组可得与的值,从而可得数列的通项公式;(2)由(1)可知,利用裂项相消法可求数列的前n项和.小问1详解】依题意:设等差数列的首项为,公差为,则解得所以数列的通项公式为【小问2详解】由(1)可知因为,所以,所以.18、(1)证明见解析;(2)【解析】(1)易得,再由勾股定理逆定理证明,即可得线面垂直;(2)根据(1)得,进而根据几何关系,利用等体积法求解即可.【详解】解:(1)连接,∵,是中点,∴,,又,,∴,∴,∵,∴,∴,,平面,∴平面;(2)∵点在棱上,且,,为的中点.∴,∴由余弦定理得,即,∴,由(1)平面,设点到平面的距离为∴,即,解得:所以点到平面的距离为.19、(1)证明见解析,(2)证明见解析【解析】(1)在等式两边同时除以,结合等差数列的定义可证得数列为等差数列,确定该数列的首项和公差,可求得的表达式;(2)求得,利用裂项相消法求得,即可证得原不等式成立.【小问1详解】解:在等式两边同时除以可得且,所以,数列是以为首项,以为公差的等差数列,则,因此,.【小问2详解】证明:,所以,.故原不等式得证.20、(1);(2).【解析】(1)利用椭圆的焦点与抛物线的焦点相同,列出方程求解即可(2)设,、,,联立直线与抛物线方程,利用韦达定理,通过,求出,得到直线方程【小问1详解】由题意知:,,∴的方程是【小问2详解】设,、,,由题意知,由,得,∴,,,∵以为直径的圆过点,∴,即,∴,解得,∴直线的方程是21、.【解析】求得集合,根据,分和,两种情况讨论,结合二次函数的性质,即可求解.【详解】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度市场推广及合作合同
- 2024年度股权转让合同具体内容与标的说明
- 学校班级是我家课件-人民版
- 2024年度创新产品研发对赌合同
- 2024年度企业形象设计与品牌推广合同
- 2024年度汽车租赁合同自驾版2篇
- 2024年度甲乙双方煤炭仓储运输合同
- 2024年度宠物用品采购销售合同3篇
- 2024年度科研仪器设备采购与安装服务合同
- 销售人员应当具备怎样的素质和能力课件
- 医院各委员会领导组及工作职责、制度汇编
- 船舶结构与设备 船舶常识
- 妇产科副高答辩—实践部分(共31页)
- 煤矿采煤工作面收尾回撤安全风险评估及安全技术措施
- 全面详细解读《中华人民共和国教育法》PPT课件
- 《中国人民站起来了》教学反思
- _獐子岛内部控制失效案例分析
- 支气管镜下冷冻肺活检术的护理配合
- 乳腺癌相关解剖和手术技巧体会-PPT课件
- ket分类词汇表
- 220种食物的血糖生成指数(GI)表
评论
0/150
提交评论