黑龙江省哈尔滨八中2025届数学高一上期末经典模拟试题含解析_第1页
黑龙江省哈尔滨八中2025届数学高一上期末经典模拟试题含解析_第2页
黑龙江省哈尔滨八中2025届数学高一上期末经典模拟试题含解析_第3页
黑龙江省哈尔滨八中2025届数学高一上期末经典模拟试题含解析_第4页
黑龙江省哈尔滨八中2025届数学高一上期末经典模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

黑龙江省哈尔滨八中2025届数学高一上期末经典模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列函数满足在定义域上为减函数且为奇函数的是()A. B.C. D.2.下列函数中,既是奇函数又在区间上是增函数的是()A. B.C. D.3.下列关系中,正确的是()A. B.C D.4.函数部分图像如图所示,则的值为()A. B.C. D.5.若,,则下列结论正确的是()A. B.C. D.a,b大小不确定6.若,则错误的是A. B.C. D.7.已知,是不共线的向量,,,,若,,三点共线,则实数的值为()A. B.10C. D.58.()A. B.C. D.19.若是的重心,且(,为实数),则()A. B.1C. D.10.已知数列是首项,公比的等比数列,且,,成等差数列,则公比等于()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若函数是R上的减函数,则实数a的取值范围是___12.函数的值域是________13.已知函数,若函数恰有三个不同的零点,则实数k的取值范围是_____________14.若,则的终边所在的象限为______15.如图,二面角的大小是30°,线段,与所成的角为45°,则与平面所成角的正弦值是__________16.函数的定义域为_______________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,若在上的最大值为,最小值为,令.(1)求的函数表达式;(2)判断函数的单调性,并求出的最小值.18.如图,直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点.(Ⅰ)证明:BC1//平面A1CD;(Ⅱ)设AA1=AC=CB=2,AB=2,求三棱锥C一A1DE的体积.19.已知函数(,且).(1)写出函数的定义域,判断奇偶性,并证明;(2)解不等式.20.已知定义在上的奇函数.(1)求实数的值;(2)解关于的不等式21.在体育知识有奖问答竞赛中,甲、乙、丙三人同时回答一道有关篮球知识的问题,已知甲答题正确的概率是,乙答题错误的概率是,乙、丙两人都答题正确的概率是,假设每人答题正确与否是相互独立的(1)求丙答题正确的概率;(2)求甲、丙都答题错误,且乙答题正确的概率

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】根据各个基本初等函数的性质,结合函数变换的性质判断即可【详解】对A,为偶函数,故A错误;对B,为偶函数,故B错误;对C,在定义域上为减函数且为奇函数,故C正确;对D,在和上分别单调递减,故D错误;故选:C【点睛】本题主要考查了常见基本初等函数的性质,属于基础题2、B【解析】先由函数定义域,排除A;再由函数奇偶性排除D,最后根据函数单调性,即可得出B正确,C错误.【详解】A选项,的定义域为,故A不满足题意;D选项,余弦函数偶函数,故D不满足题意;B选项,正切函数是奇函数,且在上单调递增,故在区间是增函数,即B正确;C选项,正弦函数是奇函数,且在上单调递增,所以在区间是增函数;因此是奇函数,且在上单调递减,故C不满足题意.故选:B.【点睛】本题主要考查三角函数性质的应用,熟记三角函数的奇偶性与单调性即可,属于基础题型.3、B【解析】根据对数函数的性质判断A,根据指数函数的性质判断B,根据正弦函数的性质及诱导公式判断C,根据余弦函数的性质及诱导公式判断D;【详解】解:对于A:因为,,,故A错误;对于B:因为在定义域上单调递减,因为,所以,又,,因为在上单调递增,所以,所以,所以,故B正确;对于C:因为在上单调递减,因为,所以,又,所以,故C错误;对于D:因为在上单调递减,又,所以,又,所以,故D错误;故选:B4、C【解析】根据的最值得出,根据周期得出,利用特殊点计算,从而得出的解析式,再计算.【详解】由函数的最小值可知:,函数的周期:,则,当时,,据此可得:,令可得:,则函数的解析式为:,.故选:C.【点睛】本题考查了三角函数的图象与性质,属于中档题.5、B【解析】根据作差比较法可得解.【详解】解:因为,所以故选:B.6、D【解析】对于,由,则,故正确;对于,,故正确;对于,,故正确;对于,,故错误故选D7、A【解析】由向量的线性运算,求得,根据三点共线,得到,列出方程组,即可求解.【详解】由,,可得,因为,,三点共线,所以,所以存在唯一的实数,使得,即,所以,解得,.故选:A.8、B【解析】先利用诱导公式把化成,就把原式化成了两角和余弦公式,解之即可.【详解】由可知,故选:B9、A【解析】若与边的交点为,再由三角形中线的向量表示即可.【详解】若与边交点为,则为边上的中线,所以,又因为,所以故选:A【点睛】此题为基础题,考查向量的线性运算.10、A【解析】由等差数列性质得,由此利用等比数列通项公式能求出公比【详解】数列是首项,公比的等比数列,且,,成等差数列,,,解得(舍或故选A【点睛】本题考查等比数列的公比的求法,是基础题,解题时要认真审题,注意等差数列和等比数列的性质的合理运用二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】按照指数函数的单调性及端点处函数值的大小关系得到不等式组,解不等式组即可.【详解】由题知故答案为:.12、##【解析】求出的范围,再根据对数函数的性质即可求该函数值域.【详解】,而定义域上递减,,无最小值,函数的值域为故答案为:.13、【解析】根据函数解析式画出函数图象,则函数的零点个数,转化为函数与有三个交点,结合函数图象判断即可;【详解】解:因为,函数图象如下所示:依题意函数恰有三个不同的零点,即函数与有三个交点,结合函数图象可得,即;故答案为:14、第一或第三象限【解析】将表达式化简,,二者相等,只需满足与同号即可,从而判断角所在的象限.【详解】由,,若,只需满足,即与同号,因此的终边在第一或第三象限.故答案为:第一或第三象限.15、【解析】过点A作平面β的垂线,垂足为C,在β内过C作l的垂线,垂足为D.连结AD,由CD⊥l,AC⊥l得,l⊥面ACD,可得AD⊥l,因此,∠ADC为二面角α−l−β的平面角,∠ADC=30°又∵AB与l所成角为45°,∴∠ABD=45°连结BC,可得BC为AB在平面β内的射影,∴∠ABC为AB与平面β所成的角设AD=2x,则Rt△ACD中,AC=ADsin30°=x,Rt△ABD中,∴Rt△ABC中,故答案为.点睛:求直线和平面所成角的关键是作出这个平面的垂线进而斜线和射影所成角即为所求,有时当垂线较为难找时也可以借助于三棱锥的等体积法求得垂线长,进而用垂线长比上斜线长可求得所成角的正弦值,当空间关系较为复杂时也可以建立空间直角坐标系,利用向量求解.16、【解析】由题可知,解不等式即可得出原函数的定义域.【详解】对于函数,有,即,解得,因此,函数的定义域为.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)答案见解析.【解析】解:(1)函数的对称轴为直线,而∴在上最小值为,①当时,即时,②当2时,即时,,(2)请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.18、(Ⅰ)见解析(Ⅱ)【解析】(Ⅰ)连接AC1交A1C于点F,则DF为三角形ABC1的中位线,故DF∥BC1.再根据直线和平面平行的判定定理证得BC1∥平面A1CD.(Ⅱ)由题意可得此直三棱柱的底面ABC为等腰直角三角形,由D为AB的中点可得CD⊥平面ABB1A1.求得CD的值,利用勾股定理求得A1D、DE和A1E的值,可得A1D⊥DE.进而求得S△A1DE的值,再根据三棱锥C-A1DE的体积为•S△A1DE•CD,运算求得结果试题解析:(1)证明:连结AC1交A1C于点F,则F为AC1中点又D是AB中点,连结DF,则BC1∥DF.3分因DF⊂平面A1CD,BC1不包含于平面A1CD,4分所以BC1∥平面A1CD.5分(2)解:因为ABC﹣A1B1C1是直三棱柱,所以AA1⊥CD.由已知AC=CB,D为AB的中点,所以CD⊥AB.又AA1∩AB=A,于是CD⊥平面ABB1A1.8分由AA1=AC=CB=2,得∠ACB=90°,,,,A1E=3,故A1D2+DE2=A1E2,即DE⊥A1D10分所以三菱锥C﹣A1DE的体积为:==1.12分考点:直线与平面平行的判定;棱柱、棱锥、棱台的体积19、(1),为奇函数;(2)当时,解得:当时,【解析】【试题分析】(1)根据求得函数的定义域,利用判断出函数为奇函数.(2)将原不等式转化为,对分成两类,利用函数的单调性求得不等式的解集.试题解析】(1)由题设可得,解得,故函数定义域为从而:故为奇函数.(2)由题设可得,即:当时∴为上的减函数∴,解得:当时∴为上的增函数∴,解得:【点睛】本小题主要考查函数的定义域的求法,考查函数单调性的证明,考查利用函数的单调性解不等式,还考查了分类讨论的数学思想方法.函数的定义域是使得函数表达式有意义的的取值范围,一般是分母不为零,偶次方根被开方数不为零,对数的真数大于零,还有,.20、(1)1;(2).【解析】(1)由奇函数的性质有,可求出的值,注意验证是否为奇函数.(2)根据函数的奇偶性、单调性可得,再结合对数函数的性质求解集.【小问1详解】因为是定义在上的奇函数,所以,解得,经检验是奇函数,即【小问2详解】由,得,又是定义在上的奇函数,所以,易知在上递增,所以,则,解得,所以原不等式的解集为21、(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论