版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省杭州市余杭区部分学校2025届高一数学第一学期期末质量检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知集合,则集合中元素的个数是()A.1个 B.2个C.3个 D.4个2.已知命题:,总有,则命题的否定为()A.,使得 B.,使得C.,总有 D.,总有3.已知点在函数的图象上,则下列各点也在该函数图象上的是()A. B.C. D.4.下列全称量词命题与存在量词命题中:①设A、B为两个集合,若,则对任意,都有;②设A、B为两个集合,若,则存在,使得;③是无理数,是有理数;④是无理数,是无理数.其中真命题的个数是()A.1 B.2C.3 D.45.设函数f(x)=asinx+bcosx,其中a,b∈R,ab≠0,若f(x)≥f()对一切x∈R恒成立,则下列结论中正确的是()A.B.点是函数的一个对称中心C.在上是增函数D.存在直线经过点且与函数的图象有无数多个交点6.已知△ABC的平面直观图△A′B′C′是边长为a的正三角形,那么原△ABC的面积为()A. B.C. D.7.下列哪一项是“”的必要条件A. B.C. D.8.已知幂函数的图象过(4,2)点,则A. B.C. D.9.若函数的定义域和值域都为R,则关于实数a的下列说法中正确的是A.或3 B.C.或 D.10.弧长为3,圆心角为的扇形面积为A. B.C.2 D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知幂函数在上单调递减,则______12.已知函数有两个零点分别为a,b,则的取值范围是_____________13.已知实数x,y满足条件,则的最大值___________.14.函数的最大值是__________15.平面向量,,(R),且与的夹角等于与的夹角,则___.16.声强级L(单位:dB)由公式给出,其中I为声强(单位:W/m2).声强级为60dB的声强是声强级为30dB的声强的______倍.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.观察下列各等式:,,.(1)请选择其中的一个式子,求出a的值;(2)分析上述各式的特点,写出能反映一般规律的等式,并进行证明.18.计算下列各式的值:(1);(2).19.已知非空集合,非空集合(1)若,求(用区间表示);(2)若,求m的范围.20.设全集U=R,集合,(1)当时,求;(2)若A∩B=A,求实数a的取值范围21.化简求值:(1);(2).
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】根据,所以可取,即可得解.【详解】由集合,,根据,所以,所以中元素的个数是3.故选:C2、B【解析】根据全称命题的否定性质进行判断即可.【详解】因为全称命题的否定是特称命题,所以命题的否定为,使得,故选:B3、D【解析】由题意可得,再依次验证四个选项的正误即可求解.【详解】因为点在函数的图象上,所以,,故选项A不正确;,故选项B不正确;,故选项C不正确;,故选项D正确.故选:D4、B【解析】对于命题①②,利用全称量词命题与存在量词命题的定义结合集合包含与不包含的意义直接判断;对于命题③④,举特例说明判断作答.【详解】对于①,因集合A、B满足,则由集合包含关系的定义知,对任意,都有,①是真命题;对于②,因集合A、B满足,则由集合不包含关系的定义知,存在,使得,②是真命题;对于③,显然是无理数,也是无理数,则③是假命题;对于④,显然是无理数,却是有理数,则④是假命题.所以①②是真命题.故选:B5、D【解析】根据f(x)≥f()对一切x∈R恒成立,那么x=取得最小值.结合周期判断各选项即可【详解】函数f(x)=asinx+bcosx=周期T=2π由题意x=取得最小值,a,b∈R,ab≠0,∴f()=0不正确;x=取得最小值,那么+=就是相邻的对称中心,∴点(,0)不是函数f(x)的一个对称中心;因为x=取得最小值,根据正弦函数的性质可知,f(x)在是减函数故选D【点睛】本题考查三角函数的性质应用,排除法求解,考查转化思想以及计算能力6、C【解析】根据直观图的面积与原图面积的关系为,计算得到答案.【详解】直观图的面积,设原图面积,则由,得.故选:C.【点睛】本题考查了平面图形的直观图的面积与原面积的关系,三角形的面积公式,属于基础题.7、D【解析】根据必要条件的定义可知:“”能推出的范围是“”的必要条件,再根据“小推大”的原则去判断.【详解】由题意,“选项”是“”的必要条件,表示“”推出“选项”,所以正确选项为D.【点睛】推出关系能满足的时候,一定是小范围推出大范围,也就是“小推大”.8、D【解析】设函数式为,代入点(4,2)得考点:幂函数9、B【解析】若函数的定义域和值域都为R,则.解得或3.当时,,满足题意;当时,,值域为{1},不满足题意.故选B.10、B【解析】弧长为3,圆心角为,故答案为B二、填空题:本大题共6小题,每小题5分,共30分。11、##【解析】依题意得且,即可求出,从而得到函数解析式,再代入求值即可;【详解】解:由题意得且,则,,故故答案为:12、【解析】根据函数零点可转化为有2个不等的根,利用对数函数的性质可知,由均值不等式求解即可.详解】不妨设,因为函数有两个零点分别为a,b,所以,所以,即,且,,当且仅当,即时等号成立,此时不满足题意,,即,故答案为:13、【解析】利用几何意义,设,则k可看作圆上的动点P到原点的连线的斜率,而相切时的斜率为最大或最小值,即可求解.【详解】由题意作出如下图形:令,则k可看作圆上的动点P到原点的连线的斜率,而相切时的斜率为最大或最小值,当直线与圆相切时,在直角三角形OAB中,,∴,∴.故答案为:14、【解析】由题意得,令,则,且故,,所以当时,函数取得最大值,且,即函数的最大值为答案:点睛:(1)对于sinα+cosα,sinαcosα,sinα-cosα这三个式子,当其中一个式子的值知道时,其余二式的值可求,转化的公式为(sinα±cosα)2=1±2sinαcosα(2)求形如y=asinxcosx+b(sinx±cosx)+c的函数的最值(或值域)时,可先设t=sinx±cosx,转化为关于t的二次函数求最值(或值域)15、2【解析】,与的夹角等于与的夹角,所以考点:向量的坐标运算与向量夹角16、1000【解析】根据已知公式,应用指对数的关系及运算性质求60dB、30dB对应的声强,即可得结果.【详解】由题设,,可得,,可得,∴声强级为60dB的声强是声强级为30dB的声强的倍.故答案为:1000.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)证明见详解【解析】(1)利用第三个式子,结合特殊角的三角函数值代入计算即可;(2)用两角和正弦公式展开,代入化简,结合,即得解【小问1详解】由题意,【小问2详解】根据题干中各个式子的特点,猜想等式:证明:左边即得证18、(1);(2)0.【解析】(1)直接利用根式与分数指数幂的运算法则求解即可,化简过程注意避免出现计算错误;(2)直接利用对数的运算法则求解即可,解答过程注意避免出现计算错误.【详解】(1);(2)19、(1)(2)【解析】(1)分别解出集合A、B,再求;(2)由可得,列不等式即可求出m的范围.【小问1详解】由不等式的解为,即.由,即【小问2详解】由可知,,只需解得.即m的范围为.20、(1)或(2)【解析】(1)化简集合B,根据补集、并集的运算求解;(2)由条件转化为A⊆B,分
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年适用:高科技研发项目合作合同
- 2024苹果种植基地灌溉系统改造合同3篇
- 2024网络游戏开发与发行委托合同
- 2024年04月贵州贵州省农村信用社高校毕业生专场网络招考活动笔试历年参考题库附带答案详解
- 2025年度柴油发电机租赁及电力市场交易合同4篇
- 2024石材干挂工程安全生产与环境保护合同3篇
- 二零二五版窗帘安装与室内环境检测服务合同3篇
- 2025年度知识产权跨境交易及法律服务合同4篇
- 个人房产买卖合同2024年版5篇
- 2025年度健康医疗大数据研发与应用合同范本4篇
- 寒潮雨雪应急预案范文(2篇)
- DB33T 2570-2023 营商环境无感监测规范 指标体系
- 上海市2024年中考英语试题及答案
- 房屋市政工程生产安全重大事故隐患判定标准(2024版)宣传海报
- 垃圾车驾驶员聘用合同
- 2025年道路运输企业客运驾驶员安全教育培训计划
- 南京工业大学浦江学院《线性代数(理工)》2022-2023学年第一学期期末试卷
- 2024版机床维护保养服务合同3篇
- 《论拒不执行判决、裁定罪“执行能力”之认定》
- 工程融资分红合同范例
- 2024国家安全员资格考试题库加解析答案
评论
0/150
提交评论