天津市河东区2025届高二上数学期末教学质量检测试题含解析_第1页
天津市河东区2025届高二上数学期末教学质量检测试题含解析_第2页
天津市河东区2025届高二上数学期末教学质量检测试题含解析_第3页
天津市河东区2025届高二上数学期末教学质量检测试题含解析_第4页
天津市河东区2025届高二上数学期末教学质量检测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

天津市河东区2025届高二上数学期末教学质量检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某综合实践小组设计了一个“双曲线型花瓶”.他们的设计思路是将某双曲线的一部分(图1中A,C之间的曲线)绕其虚轴所在直线l旋转一周,得到花瓶的侧面,花瓶底部是平整的圆面,如图2.该小组给出了图1中的相关数据:,,,,,其中B是双曲线的一个顶点.小组中甲、乙、丙、丁四位同学分别用不同的方法估算了该花瓶的容积(忽略瓶壁和底部的厚度),结果如下表所示学生甲乙丙丁估算结果()其中估算结果最接近花瓶的容积的同学是()(参考公式:,,)A.甲 B.乙C.丙 D.丁2.已知空间中三点,,,则下列结论中正确的有()A.平面ABC的一个法向量是 B.的一个单位向量的坐标是C. D.与是共线向量3.某手机上网套餐资费:每月流量500M以下(包含500M),按20元计费;超过500M,但没超过1000M(包含1000M)时,超出部分按0.15元/M计费;超过1000M时,超出部分按0.2元/M计费,流量消费累计的总流量达到封顶值(15GB)则暂停当月上网服务.若小明使用该上网套餐一个月的费用是100元,则他的上网流量是()A.800M B.900MC.1025M D.1250M4.展开式的第项为()A. B.C. D.5.已知双曲线C:(a>0,b>0),斜率为的直线与双曲线交于不同的两点,且线段的中点为P(2,4),则双曲线的渐近线方程为()A. B.C. D.6.已知集合,则()A. B.C. D.7.函数在上的最大值是A. B.C. D.8.圆心,半径为的圆的方程是()A. B.C. D.9.已知命题若直线与抛物线有且仅有一个公共点,则直线与抛物线相切,命题若,则方程表示椭圆.下列命题是真命题的是A. B.C. D.10.魏晋时期数学家刘徽首创割圆术,他在《九章算术》方田章圆田术中指出:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”这是注述中所用的割圆术是一种无限与有限的转化过程,比如在正数中的“”代表无限次重复,设,则可以利用方程求得,类似地可得到正数()A.2 B.3C. D.11.设命题,,则为()A., B.,C., D.,12.已知呈线性相关的变量x与y的部分数据如表所示:若其回归直线方程是,则()x24568y34.5m7.59A.6.5 B.6C.6.1 D.7二、填空题:本题共4小题,每小题5分,共20分。13.若点O和点F分别为椭圆+=1的中心和左焦点,点P为椭圆上的任意一点,则·的最大值为________.14.圆被直线所截得弦的最短长度为___________.15.在的展开式中项的系数为______.(结果用数值表示)16.若存在实常数k和b,使得函数F(x)和G(x)对其公共定义域上的任意实数x都满足:F(x)≥kx+b和G(x)≤kx+b恒成立,则称此直线y=kx+b为F(x)和G(x)的“隔离直线”,已知函数f(x)=x2(x∈R),g(x)(x<0),h(x)=2elnx,有下列命题:①F(x)=f(x)﹣g(x)内单调递增;②f(x)和g(x)之间存在“隔离直线”,且b的最小值为﹣4;③f(x)和g(x)之间存在“隔离直线”,且k的取值范围是(﹣4,0];④f(x)和h(x)之间存在唯一的“隔离直线”y=2x﹣e其中真命题为_____(请填所有正确命题的序号)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)圆的圆心为,且与直线相切,求:(1)求圆的方程;(2)过的直线与圆交于,两点,如果,求直线的方程18.(12分)如图,在四棱锥中,平面,底面为菱形,且,,分别为,的中点(Ⅰ)证明:平面;(Ⅱ)点在棱上,且,证明:平面19.(12分)已知函数,满足,已知点是曲线上任意一点,曲线在处的切线为.(1)求切线的倾斜角的取值范围;(2)若过点可作曲线的三条切线,求实数的取值范围.20.(12分)从甲、乙两名学生中选拔一人参加射击比赛,现对他们的射击水平进行测试,两人在相同条件下各射靶10次,每次命中的环数如下:甲:7,8,6,8,6,5,9,10,7,乙:9,5,7,8,7,6,8,6,7,(1)求,,,(2)你认为应该选哪名学生参加比赛?为什么?21.(12分)如图,正方形与梯形所在的平面互相垂直,,,|AB|=|AD|=2,|CD|=4,为的中点(1)求证:平面平面;(2)求二面角的正切值22.(10分)已知四边形是空间直角坐标系中的一个平行四边形,且,,(1)求点的坐标;(2)求平行四边形的面积

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据几何体可分割为圆柱和曲边圆锥,利用圆柱和圆锥的体积公式对几何体的体积进行估计即可.【详解】可将几何体看作一个以为半径,高为的圆柱,再加上两个曲边圆锥,其中底面半径分别为,,高分别为,,,,所以花瓶的容积,故最接近的是丁同学的估算,故选:D2、A【解析】根据已知条件,结合空间中平面法向量的定义,向量模长的求解,以及共线定理,对每个选项进行逐一分析,即可判断和选择.【详解】因为,,,故可得,因为,故,不平行,则D错误;对A:不妨记向量为,则,又,不平行,故向量是平面的法向量,则A正确;对B:因为向量的模长为,其不是单位向量,故B错误;对C:因为,故可得,故C错误;故选:A.3、C【解析】根据已知条件列方程,化简求得小明的上网流量.【详解】显然小明上网流量超过了1000M但远远没达到封顶值,假设超出部分为M,由得.故选:C4、B【解析】由展开式的通项公式求解即可【详解】因为,所以展开式的第项为,故选:B5、C【解析】设,代入双曲线方程相减后可求得,从而得渐近线方程【详解】设,则,相减得,∴,又线段的中点为P(2,4),的斜率为1,∴,,∴渐近线方程为故选:C【点睛】方法点睛:本题考查求双曲线的渐近线方程,已知弦的中点(或涉及到中点),可设弦两端点的坐标,代入双曲线方程后作差,作差后式子中有直线的斜率,弦中点坐标,有.这种方法叫点差法6、D【解析】由集合的关系及交集运算,逐项判断即可得解.【详解】因为集合,,所以,,.故选:D.【点睛】本题考查了集合关系的判断及集合的交集运算,考查了运算求解能力,属于基础题.7、D【解析】求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可,结合函数的单调性求出的最大值即可【详解】函数的导数令可得,可得上单调递增,在单调递减,函数在上的最大值是故选D【点睛】本题考查了函数的单调性、最值问题,是一道中档题8、D【解析】根据圆心坐标及半径,即可得到圆的方程.【详解】因为圆心为,半径为,所以圆的方程为:.故选:D.9、B【解析】若直线与抛物线的对称轴平行,满足条件,此时直线与抛物线相交,可判断命题为假;当时,,命题为真,根据复合命题的真假关系,即可得出结论.【详解】若直线与抛物线的对称轴平行,直线与抛物线只有一个交点,直线与抛物不相切,可得命题是假命题,当时,,方程表示椭圆命题是真命题,则是真命题.故选:B.【点睛】本题考查复合命题真假的判断,属于基础题.10、A【解析】设,则,解方程可得结果.【详解】设,则且,所以,所以,所以,所以或(舍).所以.故选:A【点睛】关键点点睛:设是解题关键.11、B【解析】全称命题的否定时特称命题,把任意改为存在,把结论否定.【详解】命题,,则为“,”.故选:B12、A【解析】根据回归直线过样本点的中心进行求解即可.【详解】由题意可得,,则,解得故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、6【解析】由椭圆方程得到F,O的坐标,设P(x,y)(-2≤x≤2),利用数量积的坐标运算将·转化为二次函数最值求解.【详解】由椭圆+=1,可得F(-1,0),点O(0,0),设P(x,y)(-2≤x≤2),则·=x2+x+y2=x2+x+3=x2+x+3=(x+2)2+2,-2≤x≤2,当x=2时,·取得最大值6.故答案为:6【点睛】本题主要考查平面向量的数量积及应用以及椭圆的几何性质和二次函数求最值,还考查了运算求解的能力,属于中档题.14、【解析】首先确定直线所过定点;由圆的方程可确定圆心和半径,进而求得圆心到的距离,由此可知所求最短长度为.【详解】由得:,直线恒过点;,在圆内;又圆的圆心为,半径,圆心到点的距离,所截得弦的最短长度为.故答案为:.15、【解析】先求解出该二项式展开式的通项,然后求解出满足题意的项数值,带入通项即可求解出展开式的系数.【详解】展开式通项为,由题意,令,解得,,所以项的系数为.故答案为:.16、①②④【解析】①求出F(x)=f(x)﹣g(x)的导数,检验在x∈(,0)内的导数符号,即可判断;②、③设f(x)、g(x)的隔离直线为y=kx+b,x2≥kx+b对一切实数x成立,即有△1≤0,又kx+b对一切x<0成立,△2≤0,k≤0,b≤0,根据不等式的性质,求出k,b的范围,即可判断②③;④存在f(x)和g(x)的隔离直线,那么该直线过这个公共点,设隔离直线的斜率为k.则隔离直线,构造函数,求出函数函数的导数,根据导数求出函数的最值【解答】解:①∵F(x)=f(x)﹣g(x)=x2,∴x∈(,0),F′(x)=2x0,∴F(x)=f(x)﹣g(x)在x∈(,0)内单调递增,故①对;②、③设f(x)、g(x)的隔离直线为y=kx+b,则x2≥kx+b对一切实数x成立,即有△1≤0,k2+4b≤0,又kx+b对一切x<0成立,则kx2+bx﹣1≤0,即△2≤0,b2+4k≤0,k≤0,b≤0,即有k2≤﹣4b且b2≤﹣4k,k4≤16b2≤﹣64k⇒﹣4≤k≤0,同理⇒﹣4≤b≤0,故②对,③错;④函数f(x)和h(x)的图象在x处有公共点,因此存在f(x)和g(x)的隔离直线,那么该直线过这个公共点,设隔离直线的斜率为k.则隔离直线方程为y﹣e=k(x),即y=kx﹣ke,由f(x)≥kx﹣ke(x∈R),可得x2﹣kx+ke≥0当x∈R恒成立,则△≤0,只有k=2,此时直线方程为:y=2x﹣e,下面证明h(x)≤2x﹣e,令G(x)=2x﹣e﹣h(x)=2x﹣e﹣2elnx,G′(x),当x时,G′(x)=0,当0<x时,G′(x)<0,当x时,G′(x)>0,则当x时,G(x)取到极小值,极小值是0,也是最小值所以G(x)=2x﹣e﹣g(x)≥0,则g(x)≤2x﹣e,当x>0时恒成立∴函数f(x)和g(x)存在唯一的隔离直线y=2x﹣e,故④正确故答案为:①②④【点睛】本题以命题的真假判断与应用为载体,考查新定义,关键是对新定义的理解,考查函数的求导,利用导数求最值,属于难题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)或【解析】由点到直线的距离公式求得圆的半径,则圆的方程可求;当直线的斜率不存在时,求得弦长为,满足题意;当直线的斜率不存在时,设出直线方程,求出圆心到直线的距离,再由垂径定理列式求,则直线方程可求【小问1详解】由题意得:圆的半径为,则圆的方程为;【小问2详解】当直线的斜率不存在时,直线方程为,得,符合题意;当直线的斜率存在时,设直线方程为,即圆心到直线的距离,则,解得直线的方程为直线的方程为或18、(Ⅰ)证明见解析(Ⅱ)证明见解析【解析】(Ⅰ)证明和得到平面.(Ⅱ)根据相似得到证明平面.【详解】(Ⅰ)如图,连接.∵底面为菱形,且,∴三角形正三角形.∵为的中点,∴.又∵平面,平面,∴.∵,平面,∴平面.(Ⅱ)连接交于点,连接.∵为的中点,∴在底面中,,∴.∴,∴在三角形中,.又∵平面,平面,∴平面.【点睛】本题考查了线面垂直和线面平行,意在考查学生的空间想象能力和推断能力.19、(1)(2)【解析】(1)根据题意求出值,求导后通过导数的值域求出斜率范围,从而得到倾角范围.(2)利用导数几何意义得到过P点的切线方程,化简后构造m的函数,求新函数的极大值极小值即可.【小问1详解】因为,则,解得,所以,则,故,,,,,切线的倾斜角的的取值范围是,,.小问2详解】设曲线与过点,的切线相切于点,则切线的斜率为,所以切线方程为因为点,在切线上,所以,即,由题意,该方程有三解设,则,令,解得或,当或时,,当时,,所以在和上单调递减,在上单调递增,故的极小值为,极大值为,所以实数的取值范围是.20、(1);;;;(2)选乙参加比赛,理由见解析.【解析】(1)利用平均数和方程公式求解;(2)利用(1)的结果作出判断.【详解】(1)由数据得:;;(2)由(1)可知,甲乙两人平均成绩一样,乙

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论