广西北流、陆川、容县2024年数学九年级第一学期开学经典试题【含答案】_第1页
广西北流、陆川、容县2024年数学九年级第一学期开学经典试题【含答案】_第2页
广西北流、陆川、容县2024年数学九年级第一学期开学经典试题【含答案】_第3页
广西北流、陆川、容县2024年数学九年级第一学期开学经典试题【含答案】_第4页
广西北流、陆川、容县2024年数学九年级第一学期开学经典试题【含答案】_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共7页广西北流、陆川、容县2024年数学九年级第一学期开学经典试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)若关于x的方程x2-bx+6=0的一根是x=2,则另一根是()A.x=-3 B.x=-2 C.x=2 D.x=32、(4分)下列因式分解错误的是()A.a2-5a=aC.a2-4a+4=3、(4分)如图,四边形ABCD是菱形,对角线AC,BD相交于点O,DH⊥AB于点H,连接OH,若∠DHO=20°,则∠ADC的度数是()A.120° B.130° C.140° D.150°4、(4分)在Rt△ABC中,∠C=90°.如果BC=3,AC=5,那么AB=()A. B.4 C.4或 D.以上都不对5、(4分)如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66° B.104° C.114° D.124°6、(4分)下列等式中,不成立的是A. B.C. D.7、(4分)如图,MN是正方形ABCD的一条对称轴,点P是直线MN上的一个动点,当PC+PD最小时,∠PCD=()A.60° B.45° C.30° D.15°8、(4分)如图,是一张平行四边形纸片ABCD,要求利用所学知识作出一个菱形,甲、乙两位同学的作法分别如下:甲:连接AC,作AC的中垂线交AD、BC于E、F,则四边形AFCE是菱形.乙:分别作∠A与∠B的平分线AE、BF,分别交BC于点E,交AD于点F,则四边形ABEF是菱形.对于甲、乙两人的作法,可判断()A.甲正确,乙错误 B.甲错误,乙正确C.甲、乙均正确 D.甲、乙均错误二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)距离地面2m高的某处把一物体以初速度v0(m/s)竖直向上抛物出,在不计空气阻力的情况下,其上升高度s(m)与抛出时间t(s)满足:(其中g是常数,通常取10m/s2).若v0=10m/s,则该物体在运动过程中最高点距地面_________m.10、(4分)如果一组数据:8,7,5,x,9,4的平均数为6,那么x的值是_____.11、(4分)观察下列各式,并回答下列问题:①;②;③;……(1)写出第④个等式:________;(2)将你猜想到的规律用含自然数的代数式表示出来,并证明你的猜想.12、(4分)如图,正方形AFCE中,D是边CE上一点,把绕点A顺时针旋转90°,点D对应点交CF延长线于点B,若四边形ABCD的面积是、则AC长__________cm.13、(4分)如图,矩形ABCD中,已知AB=6,BC=8,BD的垂直平分线交AD于点E,交BC于点F,则BF的长为______.三、解答题(本大题共5个小题,共48分)14、(12分)如图,在▱ABCD中,延长AB至点E,延长CD至点F,使得BE=DF,连接EF,分别交AD,BC于点M,N,连接AN,CM.(1)求证:ΔDFM≅ΔBEN;(2)四边形AMCN是平行四边形吗?请说明理由.15、(8分)为进一步改善民生,增强广大人民群众的幸福感,自2016年以来,我县加大城市公园的建设,2016年县政府投入城市公园建设经费约2亿元到2018年投入城市公园建设经费约2.88亿元,假设这两年投入城市公园建设经费的年平均增长率相同.(1)求这两年我县投入城市公园建设经费的年平均增长率;(2)若我县城市公园建设经费的投入还将保持相同的年平均增长率,请你预算2019年我县城市公园建设经费约为多少亿元?16、(8分)如图,已知□ABCD中,AE平分∠BAD,CF平分∠BCD,分别交BC、AD于E、F.求证:AF=EC.17、(10分)如图,在△ABC中,AC=9,AB=12,BC=15,P为BC边上一动点,PG⊥AC于点G,PH⊥AB于点H.(1)求证:四边形AGPH是矩形;(2)在点P的运动过程中,GH的长度是否存在最小值?若存在,请求出最小值,若不存在,请说明理由.18、(10分)某老师计算学生的学期总评成绩时按照如下的标准:平时成绩占20%,期中成绩占30%,期末成绩占50%.小东和小华的成绩如下表所示:学生平时成绩期中成绩期末成绩小东708090小华907080请你通过计算回答:小东和小华的学期总评成绩谁较高?B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,在中,是边上的中线,是上一点,且连结,并延长交于点,则_________.20、(4分)若样本数据1,2,3,2的平均数是a,中位数是b,众数是c,则数据a,b,c的方差是___.21、(4分)如图,在矩形ABCD中,对角线AC与BD相交于点O,∠AOB=60°,AE平分∠BAD,AE交BC于E,则∠BOE的大小为______.22、(4分)如图,“今有直角三角形,勾(短直角边)长为5,股(长直角边)长为12,河该直角三角形能容纳的如图所示的正方形边长是多少?”,该问题的答案是______.23、(4分)如图,在中,点在上,请再添加一个适当的条件,使与相似,那么要添加的条件是__________.(只填一个即可)二、解答题(本大题共3个小题,共30分)24、(8分)某汽车租凭公司要购买轿车和面包车共辆,其中轿车最少要购买辆,轿车每辆万元,购头面包车每辆万元,公司可投入的购车资金不超过万元.(1)符合公司要求的购买方案有几种?请说明理由;(2)如果每辆轿车日租金为元,每辆面包车日租金为元,假设新购买的这辆汽车每日都可以全部租出,公司希望辆汽车的日租金最高,那么应该选择以上的哪种购买方案?且日租金最高为多少元?25、(10分)(1)解不等式组:3x﹣2<≤2x+1(2)解分式方程:26、(12分)“扫黑除恶”受到广大人民的关注,某中学对部分学生就“扫黑除恶”知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有_______人,扇形统计图中“很了解”部分所对应扇形的圆心角为_______;(2)请补全条形统计图;(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对“扫黑除恶”知识达到“很了解”和“基本了解”程度的总人数.

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、D【解析】

把x=2代入方程x2-bx+6=0,求出b,得出方程,再求出方程的解即可.【详解】解:把x=2代入方程x2-bx+6=0得:4-2b+6=0,解得:b=5,即方程为x2-5x+6=0,解得:x=2或3,即方程的另一个根是x=3,故选:D.此题考查解一元二次方程,一元二次方程的解和根与系数的关系,能求出b的值是解题的关键.2、B【解析】

依次对各选项进行因式分解,再进行判断.【详解】A.选项:a2B.选项:a2-4=(a+2)(a-2)C.选项:a2D.选项:a2故选:B.考查了提取公因式法以及公式法分解因式等知识,熟练利用公式分解因式是解题关键.3、C【解析】

由四边形ABCD是菱形,可得OB=OD,AC⊥BD,又由DH⊥AB,∠DHO=20°,可求得∠OHB的度数,然后由直角三角形斜边上的中线等于斜边的一半,证得△OBH是等腰三角形,继而求得∠ABD的度数,然后求得∠ADC的度数.【详解】∵四边形ABCD是菱形,∴OB=OD,AC⊥BD,∠ADC=∠ABC,∵DH⊥AB,∴OH=OB=BD,∵∠DHO=20°,∴∠OHB=90°﹣∠DHO=70°,∴∠ABD=∠OHB=70°,∴∠ADC=∠ABC=2∠ABD=140°,故选C.本题考查了菱形的性质、直角三角形的性质以及等腰三角形的判定与性质,证得△OBH是等腰三角形是关键.4、A【解析】解:∵∠C=90°,AC=5,BC=3,∴AB===.故选A.5、C【解析】

根据平行四边形性质和折叠性质得∠BAC=∠ACD=∠B′AC=∠1,再根据三角形内角和定理可得.【详解】∵四边形ABCD是平行四边形,

∴AB∥CD,

∴∠ACD=∠BAC,

由折叠的性质得:∠BAC=∠B′AC,

∴∠BAC=∠ACD=∠B′AC=∠1=22°∴∠B=180°-∠2-∠BAC=180°-44°-22°=114°;

故选C.本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质,求出∠BAC的度数是解决问题的关键.6、D【解析】

根据不等式的性质,对选项进行求解即可.【详解】解:、,故成立,不合题意;、,故成立,不合题意;、,故成立,不合题意;、,故不成立,符合题意.故选:.本题考查不等式,熟练掌不等式的性质及运算法则是解题关键.7、B【解析】

连接BD交MN于P′,如图,利用两点之间线段最短可得到此时P′C+P′D最短,即点P运动到P′位置时,PC+PD最小,然后根据正方形的性质求出∠P′CD的度数即可.【详解】连接BD交MN于P′,如图:∵MN是正方形ABCD的一条对称轴∴P′B=P′C∴P′C+P′D=P′B+P′D=BD∴此时P′C+P′D最短,即点P运动到P′位置时,PC+PD最小∵点P′为正方形的对角线的交点∴∠P′CD=45°.故选B.本题涉及了轴对称-最短路线问题及正方形的性质等知识点,关键是熟练掌握把两条线段的位置关系转换,再利用两点之间线段最短或者垂线段最短来求解.8、C【解析】

由甲乙的做法,根据菱形的判定方法可知正误.【详解】解:甲的作法如图所示,∵四边形ABCD是平行四边形∴AD∥BC∴AE∥CF,∠EAO=∠FCO又∵EF垂直平分AC∴AO=CO,AE=CE又∵∠AOE=∠COF∴ΔAOE≅ΔCOF(ASA)∴AE=CF∴四边形AFCE为平行四边形又∵AE=CE∴四边形AFCE为菱形所以甲的作法正确.乙的作法如图所示∵AD∥BC∴∠FAE=∠BEA∵AE平分∠BAD∴∠FAE=∠BAE∴∠BEA=∠BAE∴BA=BE同理可得AB=AF∴AF=BE又∵AF∥BE∴四边形ABEF为平行四边形∵AB=AF∴四边形ABEF为菱形所以乙的作法正确故选:C本题考查了菱形的判定,熟练运用菱形的判定进行证明是解题的关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、7【解析】试题分析:将=10和g=10代入可得:S=-5+10t,则最大值为:=5,则离地面的距离为:5+2=7m.考点:二次函数的最值.10、1【解析】

利用平均数的定义,列出方程=6即可求解.【详解】解:根据题意知=6,解得:x=1,故答案为1.本题考查了平均数的概念.平均数是指在一组数据中所有数据之和再除以数据的个数.11、(1);(2)猜想:【解析】

(1)此题应先观察列举出的式子,可找出它们的一般规律,直接写出第④个等式即可;(2)找出它们的一般规律,用含有n的式子表示出来,证明时,将等式左边被开方数进行通分,把被开方数的分子开方即可.【详解】(1)1)观察列举出的式子,可找出它们的一般规律,直接写出第④个等式:故答案为:(2)猜想:用含自然数的代数式可表示为:证明:左边右边,所以猜想正确.本题主要考查学生把特殊归纳到一般的能力及二次根式的化简,解题的关键是仔细观察,找出各式的内在联系解决问题.12、2【解析】

根据旋转的性质得到S△AED=S△AFB,根据四边形ABCD的面积是18cm1得出正方形AFCE的面积是18cm1,求出AE、EC的长,根据等腰直角三角形的性质求出AC即可.【详解】解:∵四边形AFCE是正方形,∴AE=EC,∠E=90°,△ADE绕点A顺时针旋转90°,点D对应点交CF延长线于点B,∴△ABF≌△ADE,∴正方形AFCE的面积=四边形ABCD的面积=18cm1.∴AE=CE==,∴AC=AE=2cm.故答案为:2.本题考查了旋转的性质,全等三角形的性质,正方形性质,关键是求出正方形AFCE的边长.13、【解析】

根据矩形的性质和勾股定理求出BD,证明△BOF∽△BCD,根据相似三角形的性质得到比例式,求出BF即可.【详解】解:四边形ABCD是矩形,∴∠A=90°,AB=6,AD=BC=8,∴BD==10,又∵EF是BD的垂直平分线,∴OB=OD=5,∠BOF=90°,又∵∠C=90°,∴△BOF∽△BCD,∴,即:,解得:BF=本题考查的是矩形的性质、线段垂直平分线的性质、相似三角形的性质和判定以及勾股定理的应用,掌握矩形的四个角是直角、对边相等以及线段垂直平分线的定义是解题的关键.三、解答题(本大题共5个小题,共48分)14、(1)见解析;(2)是,理由见解析【解析】

(1)根据平行四边形的性质得出∠BAD=∠BCD,AB∥CD,根据平行线的性质得出∠BAD=∠ADF,∠EBC=∠BCD,∠E=∠F,求出∠ADF=∠EBC,根据全等三角形的判定得出即可;(2)根据全等求出DM=BN,求出AM=CN,根据平行四边形的判定得出即可.【详解】(1)证明:在▱ABCD中,∠BAD=∠BCD,∵AB∥CD,∴∠BAD=∠ADF,∠EBC=∠BCD,∴∠ADF=∠EBC,∵延长AB至点E,延长CD至点F,∴∠F=∠E,又∵BE=DF,∴ΔDFM≅ΔBEN;(2)由(1)知ΔDFM≅ΔBEN,∴DM=BN,在▱ABCD中,AD=BC,且AD∥BC∴AD-DM=BC-BN∴AM=CN,且AM∥CN,∴四边形ANCN是平行四边形.本题考查了平行四边形的性质和判定,全等三角形的性质和判定,平行线的性质等知识点,能综合运用定理进行推理是解此题的关键.15、(1)这两年我县投入城市公园建设经费的年平均增长率是0.2;(2)2019年我县城市公园建设经费约为3.456亿元.【解析】

(1)设这两年我县投入城市公园建设经费的年平均增长率为x,根据题意,可以列出相应的一元二次方程,从而可求得年平均增长率;(2)根据(1)中的结果可以计算出2019年我县城市公园建设经费约为多少亿元.【详解】(1)设这两年我县投入城市公园建设经费的年平均增长率为x,2(1+x)2=2.88,解得,x1=0.2,x2=﹣2.2(舍去),答:这两年我县投入城市公园建设经费的年平均增长率是0.2;(2)2.88(1+0.2)=3.456(亿元),答:2019年我县城市公园建设经费约为3.456亿元.本题考查了一元二次方程的应用增长率问题;本题的关键是掌握增长率问题中的一般公式为a(1+x)n

=b,其中n为共增长了几年,a为第一年的原始数据,b是增长后的数据,x是增长率.16、证明见解析.【解析】

由四边形ABCD是平行四边形,AE平分∠BAD,CF平分∠BCD,易证得△ABE≌△CDF(ASA),即可得BE=DF,又由AD=BC,即可得AF=CE.【详解】证明:∵四边形ABCD是平行四边形,∴∠B=∠D,AD=BC,AB=CD,∠BAD=∠BCD,∵AE平分∠BAD,CF平分∠BCD,∴∠EAB=∠BAD,∠FCD=∠BCD,∴∠EAB=∠FCD,在△ABE和△CDF中,,∴△ABE≌△CDF(ASA),∴BE=DF.∵AD=BC,∴AF=EC.本题主要考查平行四边形的性质与判定;证明四边形AECF为平行四边形是解决问题的关键.17、(1)证明见解析;(2)见解析.【解析】

(1)根据“矩形的定义”证明结论;(2)连结AP.当AP⊥BC时AP最短,结合矩形的两对角线相等和面积法来求GH的值.【详解】(1)证明∵AC=9

AB=12

BC=15,∴AC2=81,AB2=144,BC2=225,∴AC2+AB2=BC2,∴∠A=90°.∵PG⊥AC,PH⊥AB,∴∠AGP=∠AHP=90°,∴四边形AGPH是矩形;(2)存在.理由如下:连结AP.∵四边形AGPH是矩形,∴GH=AP.∵当AP⊥BC时AP最短.∴9×12=15•AP.∴AP=.本题考查了矩形的判定与性质.解答(2)题时,注意“矩形的对角线相等”和“面积法”的正确应用.18、小东的学期总评成绩高于小华【解析】

根据加权平均数公式,分别求出小东和小华的学期总评分,比较得到结果.【详解】解:小东总评成绩为(分);小华总评成绩为(分).小东的学期总评成绩高于小华.本题考查加权平均数,解题的关键是熟练掌握加权平均数.一、填空题(本大题共5个小题,每小题4分,共20分)19、1:8.【解析】

先过点D作GD∥EC交AB于G,由平行线分线段成比例可得BG=GE,再根据GD∥EC,得出AE=,最后根据AE:EB=:2EG,即可得出答案.【详解】过点D作GD∥EC交AB于G,∵AD是BC边上中线,∴,即BG=GE,又∵GD∥EC,∴,∴AE=,∴AE:EB=:2EG=1:8.故答案为:1:8.本题主要考查了平行线分线段成比例定理,用到的知识点是平行线分线段成比例定理,关键是求出AE、EB、EG之间的关系.20、1.【解析】

先确定出a,b,c后,根据方差的公式计算a,b,c的方差.【详解】解:平均数;中位数;众数;,b,c的方差.故答案是:1.考查了平均数、中位数、众数和方差的意义,解题的关键是正确理解各概念的含义.21、【解析】

由矩形的性质得出∠BAD=∠ABC=90°,OA=OB,证明△AOB是等边三角形,得出AB=OB,∠ABO=60°,证出△ABE是等腰直角三角形,得出AB=BE,因此BE=OB,由等腰三角形的性质即可得出∠BOE的大小.【详解】解:∵四边形ABCD是矩形,∴∠BAD=∠ABC=90°,OA=AC,OB=BD,AC=BD,∴OA=OB,∵∠ABO=60°,∴△AOB是等边三角形,∴AB=OB,∠ABO=60°,∴∠OBE=30°,∵AE平分∠BAD,∴∠BAE=45°,∴△ABE是等腰直角三角形,∴AB=BE,∴BE=OB,∴∠BOE=(180°-∠OBE)=(180°-30°)=75°.故答案为75°.本题考查了矩形的性质,等边三角形的判定与性质,等腰直角三角形的判定与性质,等腰三角形的性质.熟练掌握矩形的性质,并能进行推理计算是解题的关键.22、【解析】

根据锐角三角函数的定义以及正方形的性质即可求出答案.【详解】解:设正方形的边长为x,∴CE=ED=x,∴AE=AC-CE=12-x,在Rt△ABC中,,在Rt△ADE中,,∴,∴解得:x=,故答案为:.本题考查三角形的综合问题,解题的关键是熟练运用锐角三角函数的定义以及正方形的性质,本题属于中等题型.23、或【解析】

已知与的公共角相等,根据两角对应相等的两个三角形相似再添加一组对应角相等即可.【详解】解:(公共角)(或)(两角对应相等的两个三角形相似)故答案为:或本题考查了相似三角形的判定,熟练掌握相似三角形的判定定理是解题的关键.二、解答题(本大题共3个小题,共30分)24、(1)三种,理由见解析;(2)购买5辆轿车,5辆面包车时,日租金最高为1550元.【解析】

(1)本题首先根据题中的不等关系轿车最少要购买3辆及公司可投入的购车资金不超过55万元,列出不等式组,进而求出x的取值范围,即可确定符合公司要求的购买方案;(2)本题先由题意求出日租金总额和轿车数量之间的函数关系,再根据一次函数的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论