广东省深圳市深圳实验学校2025届九上数学开学复习检测模拟试题【含答案】_第1页
广东省深圳市深圳实验学校2025届九上数学开学复习检测模拟试题【含答案】_第2页
广东省深圳市深圳实验学校2025届九上数学开学复习检测模拟试题【含答案】_第3页
广东省深圳市深圳实验学校2025届九上数学开学复习检测模拟试题【含答案】_第4页
广东省深圳市深圳实验学校2025届九上数学开学复习检测模拟试题【含答案】_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页广东省深圳市深圳实验学校2025届九上数学开学复习检测模拟试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)2014年4月13日,某中学初三650名学生参加了中考体育测试,为了了解这些学生的体考成绩,现从中抽取了50名学生的体考成绩进行了分析,以下说法正确的是()A.这50名学生是总体的一个样本B.每位学生的体考成绩是个体C.50名学生是样本容量D.650名学生是总体2、(4分)下列各点中,在函数y=2x-5图象上的点是()A.(0,0) B.(,-4) C.(3,-1) D.(-5,0)3、(4分)如图,在△ABC中,AB=5,AC=4,∠A=60°,若边AC的垂直平分线DE交AB于点D,连接CD,则△BDC的周长为()A.8 B.9 C.5+ D.5+4、(4分)如图,菱形ABCD中,,AB=4,则以AC为边长的正方形ACEF的周长为()A.14 B.15 C.16 D.175、(4分)如图,△ABC中,AC=BC,点P为AB上的动点(不与A,B重合)过P作PE⊥AC于E,PF⊥BC于F设AP的长度为x,PE与PF的长度和为y,则能表示y与x之间的函数关系的图象大致是()A. B.C. D.6、(4分)下列各数:其中无理数的个数是()A.4 B.3 C.2 D.17、(4分)如图,在菱形ABCD中,E是AC的中点,EF∥CB,交AB于点F,如果EF=3,那么菱形ABCD的周长为()A.24 B.18 C.12 D.98、(4分)下列各数中,能使不等式x﹣3>0成立的是()A.﹣3 B.5 C.3 D.2二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,DE为Rt△ABC的中位线,点F在DE上,且∠AFB=∠BAC=90°,若AB=4,AC=8,则EF的长为____.(结果保留根号)10、(4分)已知一元二次方程x2-6x+a=0有一个根为2,则另一根为_______.11、(4分)如图,△ABC,△ADE均为等腰直角三角形,∠BAC=∠DAE=90°,将△ADE绕点A在平面内自由旋转,连接DC,点M,P,N分别为DE,DC,BC的中点,若AD=3,AB=7,则线段MN的取值范围是______.12、(4分)将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF.若AB=6,则BC的长为__.13、(4分)如图,Rt△ABC中,∠C=90°,AC=BC,∠BAC的平分线AD交BC于点D,分别过点A作AE∥BC,过点B作BE∥AD,AE与BE相交于点E.若CD=2,则四边形ADBE的面积是_____.三、解答题(本大题共5个小题,共48分)14、(12分)在△ABC中,∠C=30°,AC=4cm,AB=3cm,求BC的长.15、(8分)在“6.26”国际禁毒日到来之际,为了普及禁毒知识,提高市民禁毒意识,某区发放了一批“关爱生命,拒绝毒品”的宣传资料.据统计,甲小区共收到宣传资料350份,乙小区共收到宣传资料100份,甲小区住户比乙小区住户的3倍多25户,若两小区每户平均收到资料的数量相同.求这两小区各有多少户住户?16、(8分)如图1,是甲、乙两个圆柱形水槽的轴截面示意图,乙槽中有一四柱形铁块立放其中(圆柱形铁块的下底面完全落在乙槽底面上).现将甲槽的水匀速注入乙槽,甲、乙两个水槽中水的深度y(厘米)与注水时间x(分钟)之间的关系如图2所示,根据图象提供的信息,解答下列问题:(1)图2中折线ABC表示槽中水的深度与注水时间关系,线段DE表示槽中水的深度与注水时间之间的关系(以上两空选填“甲”或“乙”),点B的纵坐标表示的实际意义是.(2)注水多长时间时,甲、乙.两个水槽中水的深度相同?(3)若乙槽底面积为36平方厘米(壁厚不计),则乙槽中铁块的体积为立方厘米.17、(10分)如图,在△ABC中,AD平分∠BAC,AB+BD=AC,∠BAC=75°,则∠C的度数为____.18、(10分)已知,如图,,求证:.证明:∵∴________________()∴________________()又∵∴________________()∴()B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)在中,若,则_____________20、(4分)如图,已知函数y=x+2b和y=ax+3的图象交于点P,则不等式x+2b>ax+3的解集为________

.21、(4分)小明在计算内角和时,不小心漏掉了一个内角,其和为1160,则漏掉的那个内角的度数是_____________.22、(4分)一次函数y=kx-2的函数值y随自变量x的增大而减小,则k的取值范围是__.23、(4分)若分式的值为0,则的值是_____.二、解答题(本大题共3个小题,共30分)24、(8分)如图,直线y=﹣x+3与x轴相交于点B,与y轴相交于点A,点E为线段AB中点,∠ABO的平分线BD与y轴相较于点D,点A、C关于点O对称.(1)求线段DE的长;(2)一个动点P从点D出发,沿适当的路径运动到直线BC上的点F,再沿射线CB方向移动2个单位到点G,最后从点G沿适当的路径运动到点E处,当P的运动路径最短时,求此时点G的坐标;(3)将△ADE绕点A顺时针方向旋转,旋转角度α(0<α≤180°),在旋转过程中DE所在的直线分别与直线BC、直线AC相交于点M、点N,是否存在某一时刻使△CMN为等腰三角形,若存在,请求出CM的长,若不存在,请说明理由.25、(10分)校团委决定对甲、乙、丙三位候选人进行民主投票、笔试、面试考核,从中推选一名担任学生会主席.已知参加民主投票的学生为200名,每人当且仅当推荐一名候选人,民主投票结果如下扇形统计图所示,笔试和面试的成绩如下统计表所示.甲乙丙笔试788085面试927570(1)甲、乙、丙的得票数依次是______、______、______;(2)若民主投票得一票记1分,学校将民主投票、笔试、面试三项得分按3:4:3的比例确定三名候选人的考核成绩,成绩最高当选,请通过计算确定谁当选.26、(12分)(1)求不等式组的整数解.(2)解方程组:

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B【解析】

因为这50名学生的体考成绩是总体的一个样本,所以选项A错误;因为每位学生的体考成绩是个体,所以选项B正确;因为50是样本容量,样本容量是个数字,没有单位,所以选项C错误;因为这650名学生的体考成绩是总体,所以选项D错误.故选B.2、B【解析】

只要把点的坐标代入一次函数的解析式,若左边=右边,则点在函数的图象上,反之就不在函数的图象上,代入检验即可.【详解】解:A、把(0,0)代入y=2x-5得:左边=0,右边=2×(0-1)-5=-5,左边≠右边,故A选项错误;

B、把(,-4)代入y=2x-5得:左边=-4,右边=2×-5=-4,左边=右边,故B选项正确;

C、把(3,-1)代入y=2x-5得:左边=-1,右边=2×3-5=1,左边≠右边,故C选项错误;

D、把(-5,0)代入y=2x-5得:左边=0,右边=2×(-5)-5=-15,左边≠右边,故D选项错误.

故选:B.本题主要考查对一次函数图象上点的坐标特征的理解和掌握,能根据点的坐标判断是否在函数的图象上是解此题的关键.3、C【解析】

过点C作CM⊥AB,垂足为M,根据勾股定理求出BC的长,再根据DE是线段AC的垂直平分线可得△ADC等边三角形,则CD=AD=AC=4,代入数值计算即可.【详解】过点C作CM⊥AB,垂足为M,在Rt△AMC中,∵∠A=60°,AC=4,∴AM=2,MC=2,∴BM=AB-AM=3,在Rt△BMC中,BC===,∵DE是线段AC的垂直平分线,∴AD=DC,∵∠A=60°,∴△ADC等边三角形,∴CD=AD=AC=4,∴△BDC的周长=DB+DC+BC=AD+DB+BC=AB+BC=5+.故答案选C.本题考查了勾股定理,解题的关键是熟练的掌握勾股定理的运算.4、C【解析】根据菱形得出AB=BC,得出等边三角形ABC,求出AC,长,根据正方形的性质得出AF=EF=EC=AC=1,求出即可:∵四边形ABCD是菱形,∴AB=BC.∵∠B=60°,∴△ABC是等边三角形.∴AC=AB=1.∴正方形ACEF的周长是AC+CE+EF+AF=1×1=2.故选C.5、D【解析】

利用S△ABC=S△PCA+S△PCB=AC×PEPF×BC,即可求解.【详解】解:连接CP,设AC=BC=a(a为常数),则S△ABC=S△PCA+S△PCB=AC×PEPF×BC=a(PE+PF)=ay,∵△ABC的面积为常数,故y的值为常数,与x的值无关.故选:D.本题考查了动点问题的函数图象.解答该题的关键是将△ABC的面积分解为△PCA和△PCB的面积和.6、D【解析】

依据无理数的三种常见类型进行判断即可.【详解】解:在中,是无理数,有1个,故选:D.此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.7、A【解析】【分析】易得BC长为EF长的2倍,那么菱形ABCD的周长=4BC问题得解.【详解】∵E是AC中点,∵EF∥BC,交AB于点F,∴EF是△ABC的中位线,∴BC=2EF=2×3=6,∴菱形ABCD的周长是4×6=24,故选A.【点睛】本题考查了三角形中位线的性质及菱形的周长公式,熟练掌握相关知识是解题的关键.8、B【解析】

根据不等式的解集的概念即可求出答案.【详解】解:不等式x–1>0的解集为:x>1.故选B.本题考查不等式的解集,解题的关键是正确理解不等式的解的概念(使不等式成立的未知数的值叫做不等式的解).二、填空题(本大题共5个小题,每小题4分,共20分)9、【解析】

首先在Rt△ABC中,由勾股定理求出BC的长,然后利用中位线定理求出DE的长,再利用直角三角形斜边上的中线等于斜边的一半求出DF的长,进而求出EF的长.【详解】∵∠BAC=90°,AB=4,AC=8,∴BC===∵DE为Rt△ABC的中位线,∴DE=BC=,∵∠AFB=90º,∴DF=AB=2,∴EF=DE-DF=,故答案为:.本题主要考查三角形的基本概念和直角三角形的性质,掌握直角三角形的性质是解答本题的关键.10、1【解析】

设方程另一根为t,根据根与系数的关系得到2+t=6,然后解一次方程即可.【详解】设方程另一根为t,

根据题意得2+t=6,

解得t=1.

故答案为1.此题考查一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系,解题关键在于掌握方程的两根为x1,x2,则x1+x2=-.11、2≤MN≤5【解析】

根据中位线定理和等腰直角三角形的判定证明△PMN是等腰直角三角形,求出MN=BD,然后根据点D在AB上时,BD最小和点D在BA延长线上时,BD最大进行分析解答即可.【详解】∵点P,M分别是CD,DE的中点,∴PM=CE,PM∥CE,∵点P,N分别是DC,BC的中点,∴PN=BD,PN∥BD,∵△ABC,△ADE均为等腰直角三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=90°,∴∠BAD=∠CAE,∴△ABD≌△ACE(SAS),∴BD=CE,∴PM=PN,∴△PMN是等腰三角形,∵PM∥CE,∴∠DPM=∠DCE,∵PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN是等腰直角三角形,∴PM=PN=BD,∴MN=BD,∴点D在AB上时,BD最小,∴BD=AB-AD=4,MN的最小值2;点D在BA延长线上时,BD最大,∴BD=AB+AD=10,MN的最大值为5,∴线段MN的取值范围是2≤MN≤5.故答案为:2≤MN≤5.此题考查了旋转的性质,三角形中位线定理,全等三角形的判定和性质,等腰直角三角形的判定和性质等,关键是根据全等三角形的判定和等腰直角三角形的判定证明△PMN是等腰三角形.12、【解析】在菱形中,,设13、【解析】

过D作DF⊥AB于F,根据角平分线的性质得出DF=CD=2.由△ABC是等腰直角三角形得出∠ABC=45°,再证明△BDF是等腰直角三角形,求出BD=DF=2,BC=2+2=AC.易证四边形ADBE是平行四边形,得出AE=BD=2,然后根据平行四边形ADBE的面积=BDAC,代入数值计算即可求解.【详解】解:如图,过D作DF⊥AB于F,∵AD平分∠BAC,∠C=90°,∴DF=CD=2.∵Rt△ABC中,∠C=90°,AC=BC,∴∠ABC=45°,∴△BDF是等腰直角三角形,∵BF=DF=2,BD=DF=2,∴BC=CD+BD=2+2,AC=BC=2+2.∵AE//BC,BE⊥AD,∴四边形ADBE是平行四边形,∴AE=BD=2,∴平行四边形ADBE的面积=.故答案为.本题考查了平行四边形的判定与性质,等腰直角三角形的判定与性质,角平分线的性质,平行四边形的面积.求出BD的长是解题的关键.三、解答题(本大题共5个小题,共48分)14、【解析】

首先过点A作AD⊥BC,根据Rt△ADC和Rt△ABD的勾股定理分别求出CD和BD的长度,从而得出BC的长度【详解】过点A作AD⊥BC,则△ADC和△ABD为直角三角形∵∠C=30°AC=4cm∴AD=2cmCD=cm根据Rt△ABD的勾股定理可得:BD=cm∴BC=BD+CD=()cm本题考查直角三角形的勾股定理,解题关键在于能够构造出直角三角形.15、甲小区住户有175户,乙小区住户有50户【解析】

设乙小区住户为x户,则甲小区住户有:(3x+25)户,根据每户平均收到资料的数量相同,列出方程,解答即可.【详解】解:设乙小区住户为x户,根据题意得:,解得:,经检验是原方程的解,∴甲小区住户,所以,甲小区住户有175户,乙小区住户有50户.本题考查了分式方程的实际应用,解题的关键是找到题目中的关系,列出分式方程.16、(1)乙;甲;乙槽中铁块的高度为14cm;(2)当2分钟时两个水槽水面一样高;(3)84.【解析】

(1)根据题目中甲槽向乙槽注水可以得到折线ABC是乙槽中水的深度与注水时间之间的关系,点B表示的实际意义是乙槽内液面恰好与圆柱形铁块顶端相平;(2)分别求出两个水槽中y与x的函数关系式,令y相等即可得到水位相等的时间;(3)用水槽的体积减去水槽中水的体积即可得到铁块的体积;【详解】解:(1)根据图像可知,折线ABC表示乙槽中水的深度与注水时间关系,线段DE表示甲槽中水的深度与注水时间之间的关系,点B的纵坐标表示的实际意义是:乙槽中铁块的高度为14cm;故答案为:乙;甲;乙槽中铁块的高度为14cm;(2)设线段AB、DE的解析式分别为:y1=k1x+b1,y2=k2x+b2,∵AB经过点(0,2)和(4,14),DE经过(0,12)和(6,0)∴,解得:,∴解析式为y=3x+2和y=-2x+12,令3x+2=-2x+12,解得x=2,∴当2分钟时两个水槽水面一样高.(3)由图象知:当水槽中没有没过铁块时4分钟水面上升了12cm,即1分钟上升3cm,当水面没过铁块时,2分钟上升了5cm,即1分钟上升2.5cm,设铁块的底面积为acm2,则乙水槽中不放铁块的体积分别为:2.5×36cm3,∴放了铁块的体积为:3×(36-a)cm3,∴1×3×(36-a)=1×2.5×36,解得a=6,∴铁块的体积为:6×14=84(cm3),故答案为:84.本题考查的是用一次函数解决实际问题,此类题是近年中考中的热点问题.注意利用一次函数求最值时,关键是应用一次函数的性质;即由函数y随x的变化,结合自变量的取值范围确定最值.17、35°.【解析】

先在AC上截取AE=AB,连接DE.想办法求出∠B:∠C的值即可解决问题.【详解】在AC上截取AE=AB,连接DE∵∠BAD=∠DAE,AD=AD∴△ABD≌△AED(SAS),∴∠B=∠AED,BD=DE又∵AB+BD=AC,∴CE=BD=DE∴∠C=∠EDC,∴∠B=∠AED=2∠C∴∠B:∠C=2:1,∵∠BAC=75°,∴∠B+∠C=180°﹣75°=105°,∴∠B=70°,∠C=35°,故答案为35°.本题考查了角平分线的性质,全等三角形的判定和性质等知识,以及三角形的外角等于不相邻的两个内角之和.作出辅助线是解答本题的关键.18、DE∥AC;内错角相等,两直线平行;;两直线平行,内错角相等;;两直线平行,同位角相等.【解析】

根据平行线的性质和判定,还有等量代换可得.【详解】证明:∵∴___DE∥AC_____(内错角相等,两直线平行)∴________________(两直线平行,内错角相等)又∵∴________________(两直线平行,同位角相等)∴(等量代换)考核知识点:平行线的判定和性质.理解好判定和性质是关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、;【解析】

根据在直角三角形中,角所对的边是斜边的一半,即可的BC的长.【详解】根据题意中,若所以可得BC=故答案为1本题主要考查在直角三角形中,角所对的边是斜边的一半,这是一个重要的直角三角形的性质,应当熟练掌握.20、x>1【解析】解:由图象可知:当x>1时,.故答案为:x>1.21、100°【解析】

根据n边形的内角和是(n-2)•180°,少计算了一个内角,结果得1160,可以解方程(n-2)•180°≥1160,由于每一个内角应大于0°而小于180度,则多边形的边数n一定是最小的整数值,从而求出多边形的边数,内角和,进而求出少计算的内角.【详解】解:设多边形的边数是n.

依题意有(n-2)•180°≥1160°,解得:则多边形的边数n=9;

九边形的内角和是(9-2)•180=1260度;

则未计算的内角的大小为1260-1160°=100°.

故答案为:100°本题主要考查了多边形的内角和定理,正确确定多边形的边数是解题的关键.22、k<1【解析】

根据一次函数图象的增减性来确定k的符号即可.【详解】解:∵一次函数y=kx-2的函数值y随自变量x的增大而减小,∴k<1,故答案为k<1.本题考查了一次函数图象与系数的关系.在直线y=kx+b(k≠1)中,当k>1时,y随x的增大而增大;当k<1时,y随x的增大而减小.23、1【解析】

分式值为零的条件:分子等于零且分母不等于零,由此列出不等式和等式,求解即可.【详解】∵分式的值为0,∴,∴x=1.故答案是:1.考查了分式的值为零的条件,解题关键是:分式值为零的条件是分子等于零且分母不等于零.二、解答题(本大题共3个小题,共30分)24、(1)1;(2)(,);(3)6+﹣3或6++3或2﹣2或8.【解析】

(1)想办法证明DE⊥AB,利用角平分线的性质定理证明DE=OD即可解决问题;(2)过点E作EE′∥BC,点E′在x轴下方且EE′=2,作点D关于直线BC的对称点D′,连接E′D′交BC于F,在射线CB上取FG=2.此时D→F→G→E的路径最短.(3)分三种情形:①如图1中,当CM=CN时,在AE上取一点P,使得AP=PN.设EN=x.②如图2中,当MN=MC时,作BP⊥MN于P,则四边形ADPB是矩形.③如图3中,当NC=MN时,D与N重合,作DP⊥BC于P.分别解直角三角形即可解决问题.【详解】解:(1)∵直线y=﹣x+3与x轴相交于点B,与y轴相交于点A,∴A(0,3),B(,0),∴OA=3,OB=,∴tan∠ABO==,∴∠ABO=60°,∵BD平分∠ABO,∴∠DBO=30°,∴OD=OB•tan30°=1,DB=2OD=2,∴AD=DB=2,∴AE=EB,∴DE⊥AB,∵DO⊥OB,DB平分∠ABO,∴DE=DO=1.(2)过点E作EE′∥BC,点E′在x轴下方且EE′=2,作点D关于直线BC的对称点D′,连接E′D′交BC于F,在射线CB上取FG=2.此时D→F→G→E的路径最短.∵E′(,),D′(2,﹣1),∴直线D′E′的解析式为,直线BC的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论