云南省西南名校联盟2025届高一数学第一学期期末复习检测试题含解析_第1页
云南省西南名校联盟2025届高一数学第一学期期末复习检测试题含解析_第2页
云南省西南名校联盟2025届高一数学第一学期期末复习检测试题含解析_第3页
云南省西南名校联盟2025届高一数学第一学期期末复习检测试题含解析_第4页
云南省西南名校联盟2025届高一数学第一学期期末复习检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省西南名校联盟2025届高一数学第一学期期末复习检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,且,则的值是A. B.C. D.2.已知,,,则a、b、c大小关系为()A. B.C. D.3.已知a>0,则当取得最小值时,a值为()A. B.C. D.34.设f(x)为偶函数,且在区间(-∞,0)上是增函数,,则xf(x)<0解集为()A.(-1,0)∪(2,+∞) B.(-∞,-2)∪(0,2)C.(-2,0)∪(2,+∞) D.(-2,0)∪(0,2)5.下列选项中,与的值不相等的是()A B.cos18°cos42°﹣sin18°sin42°C. D.6.如图,一根绝对刚性且长度不变、质量可忽略不计线,一端固定,另一端悬挂一个沙漏让沙漏在偏离平衡位置一定角度后在重力作用下在铅垂面内做周期摆动.设线长为,沙漏摆动时离开平衡位置的位移(单位:cm)与时间(单位:s)的函数关系是,.若,要使沙漏摆动的最小正周期是,则线长约为()A.5m B.C. D.20m7.设命题,使得,则命题为的否定为()A., B.,使得C., D.,使得8.已知,则a,b,c的大小关系是()A. B.C. D.9.圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面的半径为()A.7 B.6C.5 D.310.函数在的图象大致为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.当时,,则a的取值范围是________.12.已知,,则_____;_____13.已知函数是定义在R上的增函数,且,那么实数a的取值范围为________14.若f(x)是定义在R上的偶函数,当x≥0时,f(x)=,若方程f(x)=kx恰有3个不同的根,则实数k的取值范围是______15.函数的定义域是______________.16.设函数fx=ex-1,x≥a-xx2-5x+6,x<a,则当时,三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某市为发展农业经济,鼓励农产品加工,助推美丽乡村建设,成立了生产一种饮料的食品加工企业,每瓶饮料的售价为14元,月销售量为9万瓶.(1)根据市场调查,若每瓶饮料的售价每提高1元,则月销售量将减少5000瓶,要使月销售收入不低于原来的月销售收入,该饮料每瓶售价最多为多少元?(2)为了提高月销售量,该企业对此饮料进行技术和销售策略改革,提高每瓶饮料的售价到元,并投入万元作为技术革新费用,投入2万元作为固定宣传费用.试问:技术革新后,要使革新后的月销售收入不低于原来的月销售收入与总投入之和,求月销售量(万瓶)的最小值,以及取最小值时的每瓶饮料的售价.18.已知集合,.(1)若,求;(2)若,求的取值范围.19.目前全球新冠疫情严重,核酸检测结果成为是否感染新型冠状病毒的重要依据,某核酸检测机构,为了快速及时地进行核酸检测,花费36万元购进核酸检测设备.若该设备预计从第1个月到第个月的检测费用和设备维护费用总计为万元,该设备每月检测收入为20万元.(1)该设备投入使用后,从第几个月开始盈利?(即总收入减去成本及所有支出费用之差为正值);(2)若该设备使用若干月后,处理方案有两种:①月平均盈利达到最大值时,以20万元价格卖出;②盈利总额达到最大值时,以16万元的价格卖出.哪一种方案较为合算?请说明理由.20.(1)试证明差角的余弦公式:;(2)利用公式推导:①和角的余弦公式,正弦公式,正切公式;②倍角公式,,.21.如图,在直三棱柱中,点为的中点,,,.(1)证明:平面.(2)求三棱锥的体积.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】由已知利用同角三角函数基本关系式可求,的值,即可得解【详解】由题意,知,且,所以,则,故选B【点睛】本题主要考查了同角三角函数基本关系式在三角函数化简求值中的应用,其中解答中熟练应用同角三角函数的基本关系式,准确求解是解答的关键,着重考查了运算与求解能力,属于基础题.2、C【解析】根据对数函数以及指数函数单调性比较大小即可.【详解】则故选:C3、C【解析】利用基本不等式求最值即可.【详解】∵a>0,∴,当且仅当,即时,等号成立,故选:C4、C【解析】结合函数的性质,得到,画出函数的图象,结合图象,即可求解.【详解】根据题意,偶函数f(x)在(-∞,0)上为增函数,又,则函数f(x)在(0,+∞)上为减函数,且,函数f(x)的草图如图,又由,可得或,由图可得-2<x<0或x>2,即不等式的解集为(-2,0)∪(2,+∞).故选:C.本题主要考查了函数的奇偶性与单调性的应用,其中解答中熟记函数的奇偶性与单调性,结合函数的图象求解是解答的关键,着重考查推理与运算能力.5、C【解析】先计算的值,再逐项计算各项的值,从而可得正确的选项.【详解】.对于A,因为,故A正确.对于B,,故B正确.对于C,,故C错误.对于D,,故D正确.故选:C.6、A【解析】根据余弦函数的周期公式计算,即可求得答案.【详解】因为函数最小正周期是,故,即,解得(m),故选:A7、C【解析】根据给定条件由含有一个量词的命题的否定方法直接写出p的否定判断作答.【详解】依题意,命题是存在量词命题,其否定是全称量词命题,所以命题的否定是:,.故选:C8、B【解析】根据指数函数的单调性、对数函数的单调性可得答案.【详解】根据指数函数的单调性可知,,即,即c>1,由对数函数的单调性可知,即.所以c>a>b故选:B9、A【解析】设圆台上底面半径为,由圆台侧面积公式列出方程,求解即可得解.【详解】设圆台上底面半径为,由题意下底面半径为,母线长,所以,解得.故选:A.【点睛】本题考查了圆台侧面积公式的应用,属于基础题.10、D【解析】先判断出函数的奇偶性,然后根据的符号判断出的大致图象.【详解】因为,所以,为奇函数,所以排除A项,又,所以排除B、C两项,故选:D【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的特征点,排除不合要求的图象.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】分类讨论解一元二次不等式,然后确定参数范围【详解】,若,则或,此时时,不等式成立,若,则或,要满足题意,则,即综上,故答案为:12、①.②.【解析】利用指数式与对数的互化以及对数的运算性质化简可得结果.【详解】因为,则,故.故答案为:;213、【解析】利用函数单调性的定义求解即可.【详解】由已知条件得,解得,则实数的取值范围为.故答案为:.14、[-,-)∪(,]【解析】利用周期与对称性得出f(x)的函数图象,根据交点个数列出不等式得出k的范围【详解】∵当x>2时,f(x)=f(x-1),∴f(x)在(1,+∞)上是周期为1的函数,作出y=f(x)的函数图象如下:∵方程f(x)=kx恰有3个不同的根,∴y=f(x)与y=kx有三个交点,若k>0,则若k<0,由对称性可知.故答案为[-,-)∪(,].【点睛】本题考查了函数零点与函数图象的关系,函数周期与奇偶性的应用,方程根的问题常转化为函数图象的交点问题,属于中档题15、【解析】根据表达式有意义列条件,再求解条件得定义域.【详解】由题知,,整理得解得.所以函数定义域是.故答案为:.16、①.②.【解析】当时得到,令,再利用定义法证明在上单调递减,从而得到,令,,根据指数函数的性质得到函数的单调性,即可求出的最小值,即可得到的最小值;分别求出与的零点,根据恰有两个零点,即可求出的取值范围;【详解】解:当时,令,,设且,则因为且,所以,,所以,所以,所以在上单调递减,所以,令,,函数在定义域上单调递增,所以,所以的最小值为;对于,令,即,解得,对于,令,即,解得或或,因为fx=ex-1,x≥a-xx2-5x+6,x<a恰有两个零点,则和一定为的零点,不为的零点,所以,即;故答案为:;;三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)18元;(2),此时每瓶饮料的售价为16元.【解析】(1)先求售价为元时的销售收入,再列不等式求解;(2)由题意有解,参变分离后求的最小值.【详解】(1)设每平售价为元,依题意有,即,解得:,所以要使月销售收入不低于原来的月销售收入,该饮料每瓶售价最多为18元;(2)当时,,有解,当时,即,,当且仅当时,即时等号成立,,因此月销售量要达到16万瓶时,才能使技术革新后的月销售收入不低于原来的月销售收入与总投入之和,此时售价为16元.【点睛】关键点点睛:本题考查函数的实际应用问题,关键是读懂题意,并能抽象出函数关系,第二问的关键是理解当时,有能使不等式成立,即有解,求的取值范围.18、(1);(2).【解析】(1)先由得,再由并集的概念,即可得出结果;(2)根据,分别讨论,两种情况,即可得出结果.【详解】(1)若,则,又,所以;(2)因为,若,则,即;若,只需,解得,综上,取值范围为.【点睛】本题主要考查求集合的并集,考查由集合的包含关系求参数,属于常考题型.19、(1)第4个月开始盈利(2)方案①较为合算,理由见解析【解析】(1)求出利润表达式然后解不等式可得答案;(2)分别计算出两种方案的利润比较可得答案.【小问1详解】由题意得,即,解得,∴.∴该设备从第4个月开始盈利.【小问2详解】该设备若干月后,处理方案有两种:①当月平均盈利达到最大值时,以20万元的价格卖出,.当且仅当时,取等号,月平均盈利达到最大,∴方案①的利润为:(万元).②当盈利总额达到最大值时,以16万元的价格卖出.,∴或时,盈利总额最大,∴方案②的利润为20+16=36(万元),∵38>36,∴方案①较为合算.20、(1)证明见解析;(2)①答案见解析;②答案见解析【解析】在单位圆里面证明,然后根据诱导公式即可证明和,利用正弦余弦和正切的关系即可证明;用正弦余弦正切的和角公式即可证明对应的二倍角公式.【详解】(1)不妨令.如图,设单位圆与轴的正半轴相交于点,以轴非负半轴为始边作角,它们的终边分别与单位圆相交于点,,.连接.若把扇形绕着点旋转角,则点分別与点重合.根据圆的旋转对称性可知,与重合,从而,=,∴.根据两点间的距离公式,得:,化简得:当时,上式仍然成立.∴,对于任意角有

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论