![广东省梅州市2025届高一上数学期末教学质量检测模拟试题含解析_第1页](http://file4.renrendoc.com/view14/M0A/05/24/wKhkGWcZNiWAD5toAAH43LwiZeY504.jpg)
![广东省梅州市2025届高一上数学期末教学质量检测模拟试题含解析_第2页](http://file4.renrendoc.com/view14/M0A/05/24/wKhkGWcZNiWAD5toAAH43LwiZeY5042.jpg)
![广东省梅州市2025届高一上数学期末教学质量检测模拟试题含解析_第3页](http://file4.renrendoc.com/view14/M0A/05/24/wKhkGWcZNiWAD5toAAH43LwiZeY5043.jpg)
![广东省梅州市2025届高一上数学期末教学质量检测模拟试题含解析_第4页](http://file4.renrendoc.com/view14/M0A/05/24/wKhkGWcZNiWAD5toAAH43LwiZeY5044.jpg)
![广东省梅州市2025届高一上数学期末教学质量检测模拟试题含解析_第5页](http://file4.renrendoc.com/view14/M0A/05/24/wKhkGWcZNiWAD5toAAH43LwiZeY5045.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省梅州市2025届高一上数学期末教学质量检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设,,若,则ab的最小值是()A.5 B.9C.16 D.252.已知函数为上偶函数,且在上的单调递增,若,则满足的的取值范围是()A. B.C. D.3.已知是幂函数,且在第一象限内是单调递减,则的值为()A.-3 B.2C.-3或2 D.34.函数的值域是A. B.C. D.5.设,,,则的大小顺序是A. B.C. D.6.已知集合,则集合中元素的个数是()A.1个 B.2个C.3个 D.4个7.有四个关于三角函数的命题::xR,+=:x、yR,sin(x-y)=sinx-siny:x=sinx:sinx=cosyx+y=其中假命题的是A., B.,C., D.,8.为庆祝深圳特区成立40周年,2020年10月11日深圳无人机精英赛总决赛在光明区举行,全市共39支队伍参加,下图反映了某学校代表队制作的无人机载重飞行从某时刻开始15分钟内的速度(单位:米/分)与时间x(单位:分)的关系.若定义"速度差函数"u(x)为无人机在时间段为[0,x]内的最大速度与最小速度的差,则u(x)的图象为()A B.C. D.9.设集合,则()A. B.C. D.10.在去年的足球联赛上,一队每场比赛平均失球个数是1.5,全年比赛失球个数的标准差是1.1;二队每场比赛平均失球个数是2.1,全年比赛失球个数的标准差是0.4.则下列说法错误的是()A.平均来说一队比二队防守技术好 B.二队很少失球C.一队有时表现差,有时表现又非常好 D.二队比一队技术水平更不稳定二、填空题:本大题共6小题,每小题5分,共30分。11.已知,,试用a、b表示________.12.关于x的不等式在上恒成立,则实数m的取值范围是______13.已知幂函数在为增函数,则实数的值为___________.14.已知函数,又有定义在R上函数满足:(1),,均恒成立;(2)当时,,则_____,函数在区间中的所有零点之和为_______.15.如果在实数运算中定义新运算“”:当时,;当时,.那么函数的零点个数为______16.已知函数是定义在上的奇函数,则___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,其中,再从条件①、条件②、条件③这三个条件中选择两个作为已知.条件①:;条件②:的最小正周期为;条件③:的图象经过点(1)求的解析式;(2)求的单调递增区间18.已知一次函数的图像与轴、轴分别相交于点,(分别是与轴、轴正半轴同方向的单位向量),函数.(Ⅰ)求的值;(Ⅱ)当满足时,求函数的最小值.19.一只口袋装有形状大小都相同的只小球,其中只白球,只红球,只黄球,从中随机摸出只球,试求(1)只球都是红球的概率(2)只球同色概率(3)“恰有一只是白球”是“只球都是白球”的概率的几倍?20.在三棱锥中,和是边长为等边三角形,,分别是的中点.(1)求证:平面;(2)求证:平面;(3)求三棱锥的体积.21.下列函数有最大值、最小值吗?如果有,请写出取最大值、最小值时自变量x的集合,并求出最大值、最小值.(1),;(2),.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】结合基本不等式来求得的最小值.【详解】,,,,当且仅当时等号成立,由.故选:D2、B【解析】根据偶函数的性质和单调性解函数不等式【详解】是偶函数,.所以不等式化为,又在上递增,所以,或,即或故选:B3、A【解析】根据幂函数的定义判断即可【详解】由是幂函数,知,解得或.∵该函数在第一象限内是单调递减的,∴.故.故选:A.【点睛】本题考查了幂函数的定义以及函数的单调性问题,属于基础题4、A【解析】由,知,解得令,则.,即为和两函数图象有交点,作出函数图象,如图所示:由图可知,当直线和半圆相切时最小,当直线过点A(4,0)时,最大.当直线和半圆相切时,,解得,由图可知.当直线过点A(4,0)时,,解得.所以,即.故选A.5、A【解析】利用对应指数函数或对数函数的单调性,分别得到其与中间值0,1的大小比较,从而判断的大小.【详解】因为底数2>1,则在R上为增函数,所以有;因为底数,则为上的减函数,所以有;因为底数,所以为上的减函数,所以有;所以,答案为A.【点睛】本题为比较大小的题型,常利用函数单调性法以及中间值法进行大小比较,属于基础题.6、C【解析】根据,所以可取,即可得解.【详解】由集合,,根据,所以,所以中元素的个数是3.故选:C7、A【解析】故是假命题;令但故是假命题.8、D【解析】根据,“速度差函数”的定义,分,、,、,、,四种情况,分别求得函数的解析式,从而得到函数的图象【详解】解:由题意可得,当,时,翼人做匀加速运动,,“速度差函数”当,时,翼人做匀减速运动,速度从160开始下降,一直降到80,当,时,翼人做匀减速运动,从80开始下降,,当,时,翼人做匀加速运动,“速度差函数”,结合所给的图象,故选:9、B【解析】根据交集定义运算即可【详解】因为,所以,故选:B.【点睛】本题考查集合的运算,属基础题,在高考中要求不高,掌握集合的交并补的基本概念即可求解.10、B【解析】利用平均数和标准差的定义及意义即可求解.【详解】对于A,因为一队每场比赛平均失球数是1.5,二队每场比赛平均失球数是2.1,所以平均说来一队比二队防守技术好,故A正确;对于B,因为二队每场比赛平均失球数是2.1,全年比赛失球个数的标准差为0.4,所以二队经常失球,故B错误;对于C,因为一队全年比赛失球个数的标准差为1.1,二队全年比赛失球个数的标准差为0.4,所以一队有时表现很差,有时表现又非常好,故C正确;对于D,因为一队全年比赛失球个数的标准差为1.1,二队全年比赛失球个数的标准差为0.4,所以二队比一队技术水平更稳定,故D正确;故选:B.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据对数式指数式互化公式,结合对数换底公式、对数的运算性质进行求解即可.【详解】因为,所以,因此有:,故答案为:12、【解析】对m进行讨论,变形,构造新函数求导,利用单调性求解最值可得实数m的取值范围;【详解】解:由上,;当时,显然也不成立;;可得设,其定义域为R;则,令,可得;当上时,;当上时,;当时;取得最大值为可得,;解得:;故答案为.【点睛】本题考查了导数在判断函数单调性和最值中的应用,属于难题.13、4【解析】根据幂函数的定义和单调性,即可求解.【详解】解:为递增的幂函数,所以,即,解得:,故答案为:414、①.1②.42【解析】求出的周期和对称轴,再结合图象即可.【详解】由条件可知函数的图象关于对称轴对称,由可知,,则周期,即,函数在区间中的所有零点之和即为函数与函数图象的交点的横坐标之和,当时,为单调递增函数,,,且区间关于对称,又∵由已知得也是的对称轴,∴只需用研究直线左侧部分即可,由图象可知左侧有7个交点,则右侧也有7个交点,将这14个交点的横坐标从小到大排列,第个数记为,由对称性可知,则,同理,…,,∴.故答案为:,.15、【解析】化简函数的解析式,解方程,即可得解.【详解】当时,即当时,由,可得;当时,即当时,由,可得(舍).综上所述,函数的零点个数为.故答案为:.16、1【解析】依题意可得,,则,解得当时,,则所以为奇函数,满足条件,故三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)条件选择见解析,;(2)单调递增区间为,.【解析】(1)利用三角恒等变换化简得出.选择①②:由可求得的值,由正弦型函数的周期公式可求得的值,可得出函数的解析式;选择②③:由正弦型函数的周期公式可求得的值,由可求得的值,可得出函数的解析式;选择①③:由可求得的值,由结合可求得的值,可得出函数的解析式;(2)解不等式,可得出函数单调递增区间.【小问1详解】解:.选择①②:因为,所以,又因为的最小正周期为,所以,所以;选择②③:因为的最小正周期为,所以,则,又因为,所以,所以;选择①③:因为,所以,所以又因为,所以,所以,又因为,所以,所以【小问2详解】解:依题意,令,,解得,,所以的单调递增区间为,.18、(Ⅰ);(Ⅱ).【解析】(Ⅰ)由已知可得,则,又因,所以.所以.(Ⅱ)由(Ⅰ)知,由,得,即,解得.由条件得,故函数图象的对称轴为,①当,即时,在上单调递增,所以②当,即时,在处取得最小值,所以.③当,即时,在上单调递减,所以.综上函数的最小值为点睛:二次函数在给定区间上最值的类型及解法:(1)二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动,不论哪种类型,解决的关键是考查对称轴与区间的关系,当含有参数时,要依据对称轴与区间的关系进行分类讨论;(2)二次函数的单调性问题则主要依据二次函数图像的对称轴进行分析讨论求解19、(1)(2)(3)8【解析】记两只白球分别为,;两只红球分别为,;两只黄球分别为,用列举法得出从中随机取2只的所有结果;(1)列举只球都是红球的种数,利用古典概型概率公式,可得结论;(2)列举只球同色的种数,利用古典概型概率公式,可得结论;(3)求出恰有一只是白球的概率,只球都是白球的概率,可得结论【详解】解:记两只白球分别,;两只红球分别为,;两只黄球分别为,从中随机取2只的所有结果为,,,,,,,,,,,,,,共15种(1)只球都是红球为共1种,概率(2)只球同色的有:,,,共3种,概率(3)恰有一只是白球的有:,,,,,,,,共8种,概率;只球都是白球的有:,概率所以:“恰有一只是白球”是“只球都是白球”的概率的8倍【点睛】本题考查概率的计算,考查学生分析解决问题的能力,考查学生的计算能力,属于中档题20、(1)见解析(2)见解析(3).【解析】由三角形中位线定理,得出,结合线面平行的判定定理,可得平面PAC;等腰和等腰中,证出,而,由勾股定理的逆定理,得,结合,可得平面ABC;由易知PO是三棱锥的高,算出等腰的面积,再结合锥体体积公式,可得三棱锥的体积【详解】,D分别为AB,PB的中点,又平面PAC,平面PAC平面如图,连接OC,O为AB中点,,,且同理,,又,,得、平面ABC,,平面平面ABC,D为PB的中点,结合,得棱锥的高为,体积为【点睛】本题给出特殊三棱锥,求证线面平行、线面垂直并求锥体体积,考查了线面平行、线面垂直的判定与性质和锥体体积公式等知识,属于中档题21、(1)有最大值、最小值.见解析(2)有最大值、最小值.见解析【解析】(1)函数有最大最小值,使函数,取得最大值最小值的x的集合,就是使函数,取得最大值最小值的x的集合;(2)令,使函数,取得最大值的x的集合,就是使,取得最小值的z的集合,使函数,取得最小值的x的集合,就是使,取
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年膜片式液压排泥阀项目可行性研究报告
- 2025至2031年中国纸显液行业投资前景及策略咨询研究报告
- 惠州广东惠州市120急救指挥中心招聘聘用人员笔试历年参考题库附带答案详解
- 2025年晒图纸项目可行性研究报告
- 2025至2031年中国多功能专用防水粘合剂行业投资前景及策略咨询研究报告
- 2025年复合轮套项目可行性研究报告
- 2025至2031年中国低压开关板行业投资前景及策略咨询研究报告
- 2025至2031年中国DCS系统专用显示器行业投资前景及策略咨询研究报告
- 2025至2030年鸟用品项目投资价值分析报告
- 2025至2030年铝手电筒项目投资价值分析报告
- 妇产科产后虚脱患者的应急预案及程序
- 新版中国食物成分表
- DB11∕T 446-2015 建筑施工测量技术规程
- 运输车辆挂靠协议书(15篇)
- 完整版:美制螺纹尺寸对照表(牙数、牙高、螺距、小径、中径外径、钻孔)
- 绘本阅读促进幼儿分享与合作行为发展的研究分析-以中班为例 学前教育专业
- 部编人教版五年级道德与法治下册全册课件完整版
- 医院医疗质量管理制度完整版
- 粤剧课程设计
- 食品感官检验基础品评员的岗前培训课件
- AQ/T 2061-2018 金属非金属地下矿山防治水安全技术规范(正式版)
评论
0/150
提交评论