西藏自治区日喀则市南木林高级中学2025届高二上数学期末经典试题含解析_第1页
西藏自治区日喀则市南木林高级中学2025届高二上数学期末经典试题含解析_第2页
西藏自治区日喀则市南木林高级中学2025届高二上数学期末经典试题含解析_第3页
西藏自治区日喀则市南木林高级中学2025届高二上数学期末经典试题含解析_第4页
西藏自治区日喀则市南木林高级中学2025届高二上数学期末经典试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

西藏自治区日喀则市南木林高级中学2025届高二上数学期末经典试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,若,则的取值范围为()A. B.C. D.2.在三棱锥中,,,则异面直线PC与AB所成角的余弦值是()A. B.C. D.3.设函数是奇函数的导函数,且,当时,,则不等式的解集为()A. B.C. D.4.已知直线的斜率为1,直线的倾斜角比直线的倾斜角小15°,则直线的斜率为()A.-1 B.C. D.15.随机抽取甲乙两位同学连续9次成绩(单位:分),得到如图所示的成绩茎叶图,关于这9次成绩,则下列说法正确的是()A.甲成绩的中位数为33 B.乙成绩的极差为40C.甲乙两人成绩的众数相等 D.甲成绩的平均数低于乙成绩的平均数6.若函数,(其中,)的最小正周期是,且,则()A. B.C. D.7.若且,则下列不等式中一定成立的是()A. B.C. D.8.是等差数列,,,的第()项A.98 B.99C.100 D.1019.设是双曲线的两个焦点,是双曲线上的一点,且,则的面积等于()A. B.C.24 D.4810.已知直线过点,当直线与圆有两个不同的交点时,其斜率的取值范围是()A. B.C. D.11.已知数列是等差数列,下面的数列中必为等差数列的个数为()①②③A.0 B.1C.2 D.312.已知,,,,则下列不等关系正确的是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若某几何体的三视图如图所示,则该几何体的体积是__________14.在平面直角坐标系中,直线与的交点为,以为圆心作圆,圆上的点到轴的最小距离为(Ⅰ)求圆的标准方程;(Ⅱ)过点作圆的切线,求切线的方程15.已知直线与平行,则实数的值为_____________.16.展开式的常数项是________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)四棱锥中,平面,四边形为平行四边形,(1)若为中点,求证平面;(2)若,求面与面的夹角的余弦值.18.(12分)已知函数的两个极值点之差的绝对值为.(1)求的值;(2)若过原点的直线与曲线在点处相切,求点的坐标.19.(12分)已知抛物线的准线方程是.(Ⅰ)求抛物线方程;(Ⅱ)设直线与抛物线相交于,两点,为坐标原点,证明:.20.(12分)如图,在直三棱柱中,,E、F分别是、的中点(1)求证:平面;(2)求证:平面21.(12分)在中,角A,B,C的对边分别是a,b,c,且.(1)求角B的大小;(2)若,,且,求a.22.(10分)已知是边长为2的正方形,正方形绕旋转形成一个圆柱;(1)求该圆柱的表面积;(2)正方形绕顺时针旋转至,求异面直线与所成角的大小

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据题意,由为原点到直线上点的距离的平方,再根据点到直线垂线段最短,即可求得范围.【详解】由,,视为原点到直线上点的距离的平方,根据点到直线垂线段最短,可得,所有的取值范围为,故选:C.2、A【解析】分别取、、的中点、、,连接、、、、,由题意结合平面几何的知识可得、、或其补角即为异面直线PC与AB所成角,再由余弦定理即可得解.【详解】分别取、、的中点、、,连接、、、、,如图:由可得,所以,在,,可得由中位线的性质可得且,且,所以或其补角即为异面直线PC与AB所成角,在中,,所以异面直线AB与PC所成角的余弦值为.故选:A.【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下:(1)平移:平移异面直线中的一条或两条,作出异面直线所成的角;(2)认定:证明作出的角就是所求异面直线所成的角;(3)计算:求该角的值,常利用解三角形;(4)取舍:由异面直线所成的角的取值范围是,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角3、D【解析】设,则,分析可得为偶函数且,求出的导数,分析可得在上为减函数,进而分析可得上,,在上,,结合函数的奇偶性可得上,,在上,,又由即,则有或,据此分析可得答案【详解】根据题意,设,则,若奇函数,则,则有,即函数为偶函数,又由,则,则,,又由当时,,则在上为减函数,又由,则在上,,在上,,又由为偶函数,则在上,,在上,,即,则有或,故或,即不等式的解集为;故选:D4、C【解析】根据直线的斜率求出其倾斜角可求得答案.【详解】设直线的倾斜角为,所以,因为,所以,因为直线的倾斜角比直线的倾斜角小15°,所以直线的倾斜角为,则直线的斜率为.故选:C5、D【解析】按照茎叶图所给的数据计算即可.【详解】由茎叶图可知,甲的成绩为:11,22,23,24,32,32,33,41,52,其中位数为32,众数为32,平均数为;乙的成绩为:10,22,31,32,35,42,42,50,52,极差为52-10=42,众数为42,平均数为;由以上数据可知,A错误,B错误,C错误,D正确;故选:D.6、B【解析】利用余弦型函数的周期公式可求得的值,由结合的取值范围可求得的值.【详解】由已知可得,且,因此,.故选:B.7、D【解析】根据不等式的性质即可判断.【详解】对于A,若,则不等式不成立;对于B,若,则不等式不成立;对于C,若均为负值,则不等式不成立;对于D,不等号的两边同乘负值,不等号的方向改变,故正确;故选:D【点睛】本题主要考查不等式的性质,需熟练掌握性质,属于基础题.8、C【解析】等差数列,,中,,,由此求出,令,得到是这个数列的第100项【详解】解:等差数列,,中,,令,得是这个数列的第100项故选:C9、C【解析】双曲线的实轴长为2,焦距为.根据题意和双曲线的定义知,所以,,所以,所以.所以.故选:C【点睛】本题主要考查了焦点三角形以及椭圆的定义运用,属于基础题型.10、A【解析】设直线方程,利用圆与直线的关系,确定圆心到直线的距离小于半径,即可求得斜率范围.【详解】如下图:设直线l的方程为即圆心为,半径是1又直线与圆有两个不同的交点故选:A11、C【解析】根据等差数列的定义判断【详解】设的公差为,则,是等差数列,,是常数列,也是等差数列,若,则不是等差数列,故选:C12、C【解析】不等式性质相关的题型,可以通过举反例的方式判断正误.【详解】若、均为负数,因为,则,故A错.若、,则,故B错.由不等式的性质可知,因为,所以,故C对.若,因为,所以,故D错.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】根据三视图可得如图所示的几何体,从而可求其体积.【详解】据三视图分析知,该几何体为直三棱柱,且底面为直角边为1的等腰直角三角形,高为2,所以其体积故答案为:114、(Ⅰ);(Ⅱ)或【解析】(Ⅰ)求出点的坐标,设圆的半径为,圆上的点到轴的最小距离为1求得的值,由此可得出圆的标准方程;(Ⅱ)对切线的斜率是否存在进行分类讨论,当切线的斜率不存在时,可得切线方程为,验证即可;当切线的斜率存在时,可设所求切线的方程为,利用圆心到切线的距离等于圆的半径可求得的值,综合可得出所求切线的方程.【详解】(Ⅰ)联立方程组,解得,即点设圆的半径为,由于圆上的点到轴的最小距离为,则,所以,故圆的标准方程为;(Ⅱ)若切线的斜率不存在,则所求切线的方程为,圆心到直线的距离为,不合乎题意;若切线的斜率存在,可设切线的方程为,即,圆的圆心坐标为,半径为,由题意可得,整理得,解得或故所求切线方程为或【点睛】本题考查圆的标准方程的求解,同时也考查了过圆外一点的圆的切线方程的求解,考查计算能力,属于中等题.15、或【解析】根据平行线的性质进行求解即可.【详解】因为直线与平行,所以有:或,故答案为:或16、【解析】求出的通项公式,令的指数为0,即可求解.【详解】的通项公式是,,依题意,令,所以的展开式中的常数项为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】(1)先证,,再证平面即可;(2)建立空间直角坐标系,先求出面与面的法向量,再计算夹角余弦值即可.小问1详解】取中点,连接,则四边形为平行四边形,,为直角三角形,且.又平面,平面,.又,平面.【小问2详解】,为等边三角形,取中点,连接,则,以为坐标原点,分别以为轴建立空间坐标系,如图令,则,设面的法向量为,则由得取,则设面的法向量为,则由得取,则设面与面的夹角为,则所以面与面的夹角的余弦值为.18、(1);(2).【解析】(1)求,设的两根分别为,,由韦达定理可得:,,由题意知,进而可得的值;再检验所求的的值是否符合题意即可;(2)设,则,由列关于的方程,即可求得的值,进而可得的值,即可得点的坐标.【详解】由可得:设的两根分别为,,则,,由题意可知:,即,所以解得:,当时,,由可得或,由可得,所以在单调递增,在单调递减,在单调递增,所以为极大值点,为极小值点,满足两个极值点之差的绝对值为,符合题意,所以.(2)由(1)知,,设,则,由题意可得:,即,整理可得:,解得:或,因为即为坐标原点,不符合题意,所以,则,所以.19、(Ⅰ)(Ⅱ)详见解析【解析】(Ⅰ)利用排趋性的准线方程求出p,即可求解抛物线的方程;(Ⅱ)直线y=k(x-2)(k≠0)与抛物线联立,通过韦达定理求解直线的斜率关系即可证明OM⊥ON试题解析:(Ⅰ)解:因为抛物线的准线方程为,所以,解得,所以抛物线的方程为.(Ⅱ)证明:设,.将代入,消去整理得.所以.由,,两式相乘,得,注意到,异号,所以.所以直线与直线的斜率之积为,即.考点:直线与抛物线的位置关系;抛物线的标准方程20、(1)证明见解析;(2)证明见解析.【解析】(1)连接,交于点M,连接ME,则M为中点.根据三角形的中位线定理和平行四边形的判断和性质可证得,再由线面平行的判定定理可得证;(2)由线面垂直的性质和判定可得证.【详解】证明:(1)连接,交于点M,连接ME,则M为中点因为E、F分别是与的中点,所以,则,从而为平行四边形,则又因为平面平面,所以平面(2)由平面,因为平面,所以而,M为的中点,所以因为,所以平面,由(1)有,故平面21、(1);(2).【解析】(1)根据已知条件

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论