2025届吉林省白山市抚松县六中高二数学第一学期期末经典模拟试题含解析_第1页
2025届吉林省白山市抚松县六中高二数学第一学期期末经典模拟试题含解析_第2页
2025届吉林省白山市抚松县六中高二数学第一学期期末经典模拟试题含解析_第3页
2025届吉林省白山市抚松县六中高二数学第一学期期末经典模拟试题含解析_第4页
2025届吉林省白山市抚松县六中高二数学第一学期期末经典模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届吉林省白山市抚松县六中高二数学第一学期期末经典模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.甲、乙两名同学同时从教室出发去体育馆打球(路程相等),甲一半时间步行,一半时间跑步;乙一半路程步行,一半路程跑步.如果两人步行速度、跑步速度均相等,则()A.甲先到体育馆 B.乙先到体育馆C.两人同时到体育馆 D.不确定谁先到体育馆2.已知向量,,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件3.攒(cuán)尖是我国古代建筑中屋顶的一种结构样式,多见于亭阁或园林式建筑.下图是一顶圆形攒尖,其屋顶可近似看作一个圆锥,其轴截面(过圆锥轴的截面)是底边长为,顶角为的等腰三角形,则该屋顶的面积约为()A. B.C. D.4.若在1和16中间插入3个数,使这5个数成等比数列,则公比为()A. B.2C. D.45.设等比数列,有下列四个命题:①{a②是等比数列;③是等比数列;④lgan其中正确命题的个数是()A.1 B.2C.3 D.46.在递增等比数列中,为其前n项和.已知,,且,则数列的公比为()A.3 B.4C.5 D.67.已知奇函数,则的解集为()A. B.C. D.8.平面上动点到点的距离与它到直线的距离之比为,则动点的轨迹是()A.双曲线 B.抛物线C.椭圆 D.圆9.沙糖桔网店2019年全年的月收支数据如图所示,则针对2019年这一年的收支情况,下列说法中错误的是()A.月收入的最大值为90万元,最小值为30万元 B.这一年的总利润超过400万元C.这12个月利润的中位数与众数均为30 D.7月份的利润最大10.已知数列中,,当时,,设,则数列的通项公式为()A. B.C. D.11.已知正方体中,分别为棱的中点,则直线与所成角的余弦值为()A. B.C. D.12.命题“若,则”的否命题是()A.若,则 B.若,则C.若,则 D.若,则二、填空题:本题共4小题,每小题5分,共20分。13.在空间直角坐标系Oxyz中,点在x,y,z轴上的射影分别为A,B,C,则四面体PABC的体积为______________.14.已知数列满足,,则______.15.平面内n条直线两两相交,且任意三条直线不过同一点,将其交点个数记为,若规定,则,,_________,_________,(用含n的式子表示)16.圆关于y轴对称的圆的标准方程为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在平面直角坐标系中,点,,(1)求直线BC的方程;(2)记的外接圆为圆M,若直线OC被圆M截得的弦长为4,求点C的坐标18.(12分)各项都为正数的数列的前项和为,且满足.(1)求数列的通项公式;(2)求;(3)设,数列的前项和为,求使成立的的最小值.19.(12分)某小学调查学生跳绳的情况,在五年级随机抽取了100名学生进行测试,得到频率分布直方图如下,且规定积分规则如下表:每分钟跳绳个数得分17181920(1)求频率分布直方图中,跳绳个数在区间的小矩形的高;(2)依据频率分布直方图,把第40百分位数划为合格线,低于合格分数线的学生需补考,试确定本次测试的合格分数线;(3)依据积分规则,求100名学生的平均得分.20.(12分)已知直线经过点,,直线经过点,且.(1)分别求直线,的方程;(2)设直线与直线的交点为,求外接圆的方程.21.(12分)有一种鱼的身体吸收汞,当这种鱼身体中的汞含量超过其体重的1.00ppm(即百万分之一)时,人食用它,就会对人体产生危害.现从一批该鱼中随机选出30条鱼,检验鱼体中的汞含量与其体重的比值(单位:ppm),数据统计如下:0.070.240.390.540.610.660.730.820.820.820.870.910.950.980.981.021.021.081.141.201.201.261.291.311.371.401.441.581.621.68(1)求上述数据的众数,并估计这批鱼该项数据的80%分位数;(2)有A,B两个水池,两水池之间有8个完全相同的小孔联通,所有的小孔均在水下,且可以同时通过2条鱼①将其中汞的含量最低的2条鱼分别放入A水池和B水池中,若这2条鱼的游动相互独立,均有的概率进入另一水池且不再游回,求这两条鱼最终在同一水池的概率;②将其中汞的含量最低的2条鱼都先放入A水池中,若这2条鱼均会独立地且等可能地从其中任意一个小孔由A水池进入B水池且不再游回A水池,求这两条鱼由不同小孔进入B水池的概率22.(10分)自2021年秋季起,江西省普通高中起始年级全面实施新课程改革,为了迎接新高考,某校举行物理和化学等选科考试,其中600名学生化学成绩(满分100分)的频率分布直方图如图所示,其中成绩分组区间是:第一组,第二组,第三组,第四组,第五组.已知图中前三个组的频率依次构成等差数列,第一组和第五组的频率相同(1)求a,b的值;(2)估算高分(大于等于80分)人数;(3)估计这600名学生化学成绩的平均值(同一组中的数据用该组区间的中点值作代表)和中位数(中位数精确到0.1)

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】设出总路程与步行速度、跑步速度,表示出两人所花时间后比较不等式大小【详解】设总路程为,步行速度,跑步速度对于甲:,得对于乙:,当且仅当时等号成立,而,故,乙花时间多,甲先到体育馆故选:A2、A【解析】根据平面向量垂直的性质,结合平面向量数量积的坐标表示公式、充分性、必要性的定义进行求解判断即可.详解】当时,有,显然由,但是由不一定能推出,故选:A3、B【解析】由轴截面三角形,根据已知可得圆锥底面半径和母线长,然后可解.【详解】轴截面如图,其中,,所以,所以,所以圆锥的侧面积.故选:B4、A【解析】根据等比数列的通项得:,从而可求出.【详解】解:成等比数列,∴根据等比数列的通项得:,,故选:A.5、C【解析】根据等比数列的性质对四个命题逐一分析,由此确定正确命题的个数.【详解】是等比数列可得(为定值)①为常数,故①正确②,故②正确③为常数,故③正确④不一定为常数,故④错误故选C.【点睛】本小题主要考查等比数列的性质,属于基础题.6、B【解析】由已知结合等比数列的性质可求出、,然后结合等比数列的求和公式求解即可.【详解】解:由题意得:是递增等比数列又,,故故选:B7、A【解析】先由求出的值,进而可得的解析式,对求导,利用基本不等式可判断恒成立,可判断的单调性,根据单调性脱掉,再解不等式即可.【详解】的定义域为,因为是奇函数,所以,可得:,所以,经检验是奇函数,符合题意,所以,因为,所以,当且仅当即时等号成立,所以在上单调递增,由可得,即,解得:或,所以的解集为,故选:A.8、A【解析】设点,利用距离公式化简可得出点的轨迹方程,即可得出动点的轨迹图形.【详解】设点,由题意可得,化简可得,即,曲线为反比例函数图象,故动点的轨迹是双曲线.故选:A.9、B【解析】根据图形和中位数、众数的概念依次判断选项即可.【详解】A:由图可知,月收入的最大值为90,最小值为30,故A正确;B:各个月的利润分别为20,30,20,10,30,30,60,40,30,30,50,30,所以总利润为20+30+20+10+30+30+60+40+30+30+50+30=380(万元),故B错误;C:这12个月利润的中位数与众数均为30,故C正确;D:7月份的利润最大,为60万元,故D正确.故选:B10、A【解析】根据递推关系式得到,进而利用累加法可求得结果【详解】数列中,,当时,,,,,且,,故选:A11、D【解析】以D为原点建立空间直角坐标系,求出E,F,B,D1点的坐标,利用直线夹角的向量求法求解【详解】如图,以D为原点建立空间直角坐标系,设正方体的边长为2,则,,,,,直线与所成角的余弦值为:.故选D【点睛】本题主要考查了空间向量的应用及向量夹角的坐标运算,属于基础题12、B【解析】根据原命题的否命题是条件结论都要否定【详解】解:因为原命题的否命题是条件结论都要否定所以命题“若,则”的否命题是若,则;故选:B二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】将物体放入长方体中,切割处理求得体积.【详解】如图所示:四面体PABC可以看成以1,2,3为棱长的长方体切去四个全等的三棱锥,所以四面体PABC的体积为.故答案为:214、1023【解析】由数列递推公式求特定项,依次求下去即可解决.【详解】数列中,则,,,,,,故答案为:102315、①.6;②..【解析】利用第条直线与前条直线相交有个交点得出与的关系后可得结论【详解】第4条直线与前三条直线有3个交点,因此,同理,由此得到第条直线与前条直线相交有个交点,所以,即所以故答案为:6;16、【解析】根据题意可得圆心坐标为,半径为1,利用平面直角坐标系点关于坐标轴对称特征可得所求的圆心坐标为,半径为1,进而得出结果.【详解】由题意知,圆的圆心坐标为,半径为1,设圆关于y轴对称的圆为,所以,半径为1,所以的标准方程为.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)延长CB交x轴于点N,根据给定条件求出即可计算作答.(2)利用待定系数法求出圆M的方程,再由给定弦长确定C点位置,推理计算得解.【小问1详解】延长CB交x轴于点N,如图,因,则,又,则有,又,于是得,则直线BC的倾斜角为120°,直线BC的斜率,因此,,即所以直线BC的方程为.【小问2详解】依题意,设圆M的方程为,由(1)得:,解得,于是得圆M的方程为,即,圆心,半径,因直线OC被圆M所截的弦长为4,则直线OC过圆心,其方程为,由解得,即,所以点C的坐标是.18、(1)(2)(3)【解析】(1)直接利用数列的递推关系式,结合等差数列的定义,即可求得数列的通项公式;(2)化简,结合裂项相消法求出数列的和;(3)利用分组法求得,结合,即可求得的最小值.【小问1详解】解:因为各项都为正数的数列的前项和为,且满足,当时,解得;当时,;两式相减可得,整理得(常数),故数列是以2为首项,2为公差的等差数列;所以.【小问2详解】解:由,可得,所以,所以.【小问3详解】解:由,可得,所以当为偶数时,,因为,且为偶数,所以的最小值为48;当为奇数时,,不存在最小的值,故当为48时,满足条件.19、(1)(2)(3)分【解析】(1)根据频率之和为列方程来求得跳绳个数在区间的小矩形的高.(2)根据百分位数的计算方法计算出合格分数线.(3)根据平均数的求法求得名学生的平均得分.【小问1详解】设跳绳个数在区间的小矩形的高为,则,解得.【小问2详解】第一组的频率为,第二组的频率为,第三组的频率为,第四组的频率为,第五组的频率为,第六组的频率为,所以第百分位数为.也即合格分数线为.【小问3详解】名学生的平均得分为分.20、(1);(2).【解析】(1)根据两点式即可求出直线l1的方程,根据直线垂直的关系即可求l2的方程;(2)先求出C点坐标,通过三角形的长度关系知道三角形是以AC为斜边长的直角三角形,故AC的中点即为外心,AC即为直径.解析:(1)∵直线经过点,,∴,设直线的方程为,∴,∴.(2),即:,∴,的中点为,∴的外接圆的圆心为,半径为,∴外接圆的方程为:.点睛:这个题目考查的是已知两直线位置关系求参的问题,还考查了三角形外接圆的问题.对于三角形为外接圆,圆心就是各个边的中垂线的交点,钝角三角形外心在三角形外侧,锐角三角形圆心在三角形内部,直角三角形圆心在直角三角形斜边的中点21、(1)众数为0.82,8%分位数约为1.34(2)①;②【解析】(1)根据题中表格数据即可求得答案;(2)①两条鱼有可能均在A水池也可能都在B水池,故可根据互斥事件的概率结合相互独立事件的概率计算求得答案;②先求出这两条鱼由同一个小孔进入B水池的概率,然后根据对立事件的概率计算方法,求得答案.【小问1详解】由题意知,数据的众数为0.82,估计这批鱼该项数据的80%分位数约为【小问2详解】①记“两鱼最终均在A水池”为事件A,则,记“两鱼最终均在B水池”为事件B,则,∵事件A与事件B互斥,∴

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论