四川省广安市岳池一中2025届高一上数学期末学业水平测试试题含解析_第1页
四川省广安市岳池一中2025届高一上数学期末学业水平测试试题含解析_第2页
四川省广安市岳池一中2025届高一上数学期末学业水平测试试题含解析_第3页
四川省广安市岳池一中2025届高一上数学期末学业水平测试试题含解析_第4页
四川省广安市岳池一中2025届高一上数学期末学业水平测试试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省广安市岳池一中2025届高一上数学期末学业水平测试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,在正方体中,分别为的中点,则异面直线和所成角的大小为A. B.C. D.2.已知A(3,1),B(-1,2),若∠ACB的平分线方程为y=x+1,则AC所在的直线方程为()A.y=2x+4 B.y=x-3C.x-2y-1=0 D.3x+y+1=03.是边AB上的中点,记,,则向量A. B.C. D.4.“是第一或第二象限角”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件5.设a为实数,“”是“对任意的正数x,”的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分也非必要条件6.已知是第二象限角,且,则()A. B.C. D.7.为了得到函数的图像,可以将函数的图像A.向右平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向左平移个单位长度8.已知直线是函数图象的一条对称轴,的最小正周期不小于,则的一个单调递增区间为()A. B.C. D.9.已知幂函数在上单调递减,则()A. B.5C. D.110.为了鼓励大家节约用水,北京市居民用水实行阶梯水价,其中每户的户年用水量与水价的关系如下表所示:分档户年用水量(立方米)水价(元/立方米)第一阶梯0-180(含)5第二阶梯181-260(含)7第三阶梯260以上9假设居住在北京的某户家庭2021年的年用水量为200m3,则该户家庭A.1800元 B.1400元C.1040元 D.1000元二、填空题:本大题共6小题,每小题5分,共30分。11.已知,且,写出一个满足条件的的值___________12.在平面内将点绕原点按逆时针方向旋转,得到点,则点的坐标为__________13.计算的结果是_____________14.制造一种零件,甲机床的正品率为,乙机床的正品率为.从它们制造的产品中各任抽1件,则两件都是正品的概率是__________15.若命题,,则的否定为___________.16.若数据的方差为3,则数据的方差为__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.人口问题是世界普遍关注的问题,通过对若干个大城市的统计分析,针对人口密度分布进行模拟研究,发现人口密度与到城市中心的距离之间呈现负指数关系.指数模型是经典的城市人口密度空间分布的模型之一,该模型的计算是基于圈层距离法获取距城市中心距离和人口密度数据的,具体而言就是以某市中心位置为圆心,以不同的距离为半径划分圈层,测量和分析不同圈层中的人口状况.其中x是圈层序号,将圈层序号是x的区域称为“x环”(时,1环表示距离城市中心0~3公里的圈层;时,2环表示距离城市中心3~6公里的圈层;以此类推);是城市中心的人口密度(单位:万人/平方公里),为x环的人口密度(单位:万人/平方公里);b为常数;.下表为某市2006年和2016年人口分布的相关数据:年份b20062.20.1320162.30.10(1)求该市2006年2环处的人口密度(参考数据:,结果保留一位小数);(2)2016年该市某环处的人口密度为市中心人口密度的,求该环是这个城市的多少环.(参考数据:)18.某形场地,,米(、足够长).现修一条水泥路在上,在上),在四边形中种植三种花卉,为了美观起见,决定在上取一点,使且.现将铺成鹅卵石路,设鹅卵石路总长为米.(1)设,将l表示成的函数关系式;(2)求l的最小值.19.某公司结合公司的实际情况针对调休安排展开问卷调查,提出了,,三种放假方案,调查结果如下:支持方案支持方案支持方案35岁以下20408035岁以上(含35岁)101040(1)在所有参与调查的人中,用分层抽样的方法抽取个人,已知从“支持方案”的人中抽取了6人,求的值;(2)在“支持方案”的人中,用分层抽样的方法抽取5人看作一个总体,从这5人中任意选取2人,求恰好有1人在35岁以上(含35岁)的概率.20.某大学为了解学生对两家餐厅的满意度情况,从在两家餐厅都用过餐的学生中随机抽取了100人,每人分别对这两家餐厅进行满意指数打分(满意指数是指学生对餐厅满意度情况的打分,分数设置为分.根据打分结果按,分组,得到如图所示的频率分布直方图,其中餐厅满意指数在中有30人.(1)求餐厅满意指数频率分布直方图中的值;(2)利用样本估计总体的思想,估计餐厅满意指数和餐厅满意指数的平均数及方差(同一组中的数据用该组区间中点值作代表);参考公式:,其中为的平均数,分别为对应的频率.(3)如果一名新来同学打算从两家餐厅中选择一个用餐,你建议选择哪个餐厅?说明理由.21.已知函数.(1)若函数的定义域为,求集合;(2)若集合,求.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】连DE,交AF于G,根据平面几何知识可得,于是,进而得.又在正方体中可得底面,于是可得,根据线面垂直的判定定理得到平面,于是,所以两直线所成角为【详解】如图,连DE,交AF于G在和中,根据正方体的性质可得,∴,∴,∴,∴又在正方体中可得底面,∵底面,∴,又,∴平面,∵平面,∴,∴异面直线和所成角的大小为故选D【点睛】求异面直线所成的角常采用“平移线段法”,将空间角的问题转化为平面问题处理,平移的方法一般有三种类型:利用图中已有的平行线平移;利用特殊点(线段的端点或中点)作平行线平移;补形平移.计算异面直线所成的角时通常放在三角形中利用解三角形的方法进行求解,有时也可通过线面间的垂直关系进行求解2、C【解析】设点A(3,1)关于直线的对称点为,则,解得,即,所以直线的方程为,联立解得,即,又,所以边AC所在的直线方程为,选C.点睛:本题主要考查了直线方程的求法,属于中档题.解题时要结合实际情况,准确地进行求解3、C【解析】由题意得,∴.选C4、A【解析】利用充分必要条件的定义判断.【详解】若角的终边在第一或第二象限,则,反过来,若,则的终边可能在第一或第二象限,也有可能在轴正半轴上.所以“是第一或第二象限角”是“”的充分不必要条件.故选:A5、A【解析】根据题意利用基本不等式分别判断充分性和必要性即可.【详解】若,因为,则,当且仅当时等号成立,所以充分性成立;取,因为,则,当且仅当时等号成立,即时,对任意的正数x,,但,所以必要性不成立,综上,“”是“对任意的正数x,”的充分非必要条件.故选:A.6、B【解析】先由求出,再结合是第二象限角,求即可.【详解】∵∴,∵是第二象限角,∴,∴,故A,C,D错,B对,故选:B.7、B【解析】因为,所以为了得到函数的图像,可以将函数的图像向右平移个单位长度即可.选B8、B【解析】由周期得出的范围,再由对称轴方程求得值,然后由正弦函数性质确定单调性【详解】根据题意,,所以,,,所以,,故,所以.令,,得,.令,得的一个单调递增区间为.故选:B9、C【解析】根据幂函数的定义,求得或,再结合幂函数的性质,即可求解.【详解】解:依题意,,故或;而在上单调递减,在上单调递增,故,故选:C.10、C【解析】结合阶梯水价直接求解即可.【详解】由表可知,当用水量为180m3时,水费为当水价在第二阶段时,超出20m3,水费为则年用水量为200m3,水价为故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、π(答案不唯一)【解析】利用,可得,又,确定可得结果.【详解】因为,所以,,则,或,,又,故满足要求故答案为:π(答案不唯一)12、【解析】由条件可得与x轴正向的夹角为,故与x轴正向的夹角为设点B的坐标为,则,,∴点的坐标为答案:13、.【解析】根据对数的运算公式,即可求解.【详解】根据对数的运算公式,可得.故答案为:.14、【解析】由独立事件的乘法公式求解即可.【详解】由独立事件的乘法公式可知,两件都是正品的概率是.故答案为:15、,【解析】利用特称命题的否定可得出结论.【详解】命题为特称命题,该命题的否定为“,”.故答案为:,.16、12【解析】所求方差为,填三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)1.7(2)4【解析】(2)根据表中数据,由求解;(2)根据2016年该市某环处的人口密度为市中心人口密度的,由求解.【小问1详解】解:由表中数据得:;【小问2详解】因为2016年该市某环处的人口密度为市中心人口密度的,所以,即,所以,解得,所以该环是这个城市的4环.18、(1)见解析;(2)20.【解析】(1)设,可得:,;(2)利用二次函数求最值即可.试题解析:(1)设米,则即,(2),当,即时,取得最小值为,的最小值为20.答:的最小值为20.19、(1)(2)【解析】(1)根据分层抽样按比例抽取,列出方程,能求出n的值;(2)35岁以下有4人,35岁以上(含35岁)有1人.设将35岁以下的4人标记为1,2,3,4,35岁以上(含35岁)的1人记为a,利用列举法能求出恰好有1人在35岁以上(含35岁)的概率.【详解】(1)根据分层抽样按比例抽取,得:,解得.(2)35岁以下:(人),35岁以上(含35岁):(人)设将35岁以下的4人标记为1,2,3,4,35岁以上(含35岁)的1人记为,,共10个样本点.设:恰好有1人在35岁以上(含35岁),有4个样本点,故.【点睛】本题考查概率的求法,分层抽样、古典概型、列举法等基础知识,考查运算求解能力,属于中档题.20、(1),(2)餐厅满意指数的平均数和方差分别为,;餐厅满意指数的平均数和方差分别为,(3)答案见解析【解析】(1)根据频率的含义和性质列方程,即可解得:,;(2)根据平均数和方差的定义,然后运算即可;(3)平均数和方差在实际生活中的应用,平均满意度越高,就越会受到欢迎.【小问1详解】因为餐厅满意指数在中有30人,则有:解得:根据总的频率和为1,则有:解得:综上可得:,【小问2详解】设餐厅满意指数的平均数和方差分别为餐厅满意指数的平均数和方差分别为,则有:,,,,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论