版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页福建省东山县2025届数学九上开学调研试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,已知△ABC中,∠C=90°,AD平分∠BAC,且CD:BD=3:4.若BC=21,则点D到AB边的距离为()A.7 B.9 C.11 D.142、(4分)对于代数式(为常数),下列说法正确的是()①若,则有两个相等的实数根②存在三个实数,使得③若与方程的解相同,则A.①② B.①③ C.②③ D.①②③3、(4分)下列命题中,为假命题的是()A.两组邻边分别相等的四边形是菱形 B.对角线互相垂直平分的四边形是菱形C.四个角相等的四边形是矩形 D.对角线相等的平行四边形是矩形4、(4分)如图,在ABCD中,DE,BF分别是∠ADC和∠ABC的平分线,添加一个条件,仍无法判断四边形BFDE为菱形的是()A.∠A=60˚ B.DE=DF C.EF⊥BD D.BD是∠EDF的平分线5、(4分)一次函数的图象如图所示,点在函数的图象上则关于x的不等式的解集是A. B. C. D.6、(4分)下列函数,y随x增大而减小的是()A.y=xB.y=x7、(4分)下列图形中,是中心对称图形的是()A. B.C. D.8、(4分)如果一个三角形三条边的长分别是7,24,25,则这个三角形的最大内角的度数是()A.30° B.45° C.60° D.90°二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)已知锐角,且sin=cos35°,则=______度.10、(4分)如图,在Rt△ABC中,∠B=90°,AB=,BC=3,D、E分别是AB、AC的中点,延长BC至点F,使CF=BC,连接DF、EF,则EF的长为____.11、(4分)如图,平行四边形ABCD中,点E为BC边上一点,AE和BD交于点F,已知△ABF的面积等于6,△BEF的面积等于4,则四边形CDFE的面积等于___________12、(4分)如图,在矩形中,点为的中点,点为上一点,沿折叠,点恰好与点重合,则的值为______.13、(4分)数据-2,-1,0,1,2,4的中位数是________
。三、解答题(本大题共5个小题,共48分)14、(12分)为了从甲、乙两名学生中选拔一人参加射击比赛,对他们的射击水平进行了测验两人在相同条件下各射靶次,命中的环数如下:甲:,,,,,,,,,乙:,,,,,,,,,(1)分别计算两组数据的方差.(2)如果你是教练你会选拔谁参加比赛?为什么?15、(8分)王先生准备采购一批(大于100条)某种品牌的跳绳,采购跳绳有在实体店和网店购买两种方式,通过洽谈,获得了以下信息:购买方式标价(元条)优惠条件实体店40全部按标价的8折出售网店40购买100或100条以下,按标价出售;购买100条以上,从101条开始按标价的7折出售(免邮寄费)(1)请分别写出王先生在实体店、网店购买跳绳所需的资金y1、y2元与购买的跳绳数x(x>100)条之间的函数关系式;(2)王先生选取哪种方式购买跳绳省钱?16、(8分)如图,正比例函数y1=kx与-次函数y2=mx+n的图象交于点A(3,4),一次函数y2的图象与x轴,y轴分别交于点B,点C,且0A=OC.(1)求这两个函数的解析式;(2)求直线AB与两坐标轴所围成的三角形的面积.17、(10分)先化简,再求值:其中a=1.18、(10分)如图①,在矩形ABCD中,AB=,BC=3,在BC边上取两点E、F(点E在点F的左边),以EF为边所作等边△PEF,顶点P恰好在AD上,直线PE、PF分别交直线AC于点G、H.(1)求△PEF的边长;(2)若△PEF的边EF在线段CB上移动,试猜想:PH与BE有何数量关系?并证明你猜想的结论;(3)若△PEF的边EF在射线CB上移动(分别如图②和图③所示,CF>1,P不与A重合),(2)中的结论还成立吗?若不成立,直接写出你发现的新结论.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)小明对自己上学路线的长度进行了20次测量,得到20个数据x1,x2,…,x20,已知x1+x2+…+x20=2019,当代数式(x﹣x1)2+(x﹣x2)2+…+(x﹣x20)2取得最小值时,x的值为___________.20、(4分)已知点A(a,0)和点B(0,5)两点,且直线AB与坐标轴围成的三角形的面积等于10,则a的值是______.21、(4分)某n边形的每个外角都等于它相邻内角的,则n=_____.22、(4分)已知y与x﹣1成正比例,当x=3时,y=4;那么当x=﹣3时,y=_____.23、(4分)如图,在矩形ABCD中,对角线AC,BD相交于点O,若∠AOD=120°,AB=2,则BC的长为___________.二、解答题(本大题共3个小题,共30分)24、(8分)如图,⊙O为ABC的外接圆,D为OC与AB的交点,E为线段OC延长线上一点,且EACABC.(1)求证:直线AE是⊙O的切线;(2)若D为AB的中点,CD3,AB8.①求⊙O的半径;②求ABC的内心I到点O的距离.25、(10分)先分解因式,再求值:,其中,.26、(12分)问题情境:平面直角坐标系中,矩形纸片OBCD按如图的方式放置已知,,将这张纸片沿过点B的直线折叠,使点O落在边CD上,记作点A,折痕与边OD交于点E.数学探究:点C的坐标为______;求点E的坐标及直线BE的函数关系式;若点P是x轴上的一点,直线BE上是否存在点Q,能使以A,B,P,Q为顶点的四边形是平行四边形?若存在,直接写出相应的点Q的坐标;若不存在,说明理由.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B【解析】
先确定出CD=9,再利用角平分线上的点到两边的距离相等,即可得出结论.【详解】解:
∵CD:BD=3:1.
设CD=3x,则BD=1x,
∴BC=CD+BD=7x,
∵BC=21,
∴7x=21,
∴x=3,
∴CD=9,
过点D作DE⊥AB于E,
∵AD是∠BAC的平分线,∠C=90°,
∴DE=CD=9,
∴点D到AB边的距离是9,
故选B.本题考查了角平分线的性质,线段的和差,解本题的关键是掌握角平分线的性质定理.2、B【解析】
根据根的判别式判断①;根据一元二次方程(为常数)最多有两个解判断②;将方程的解代入即可判断③.【详解】解:①方程有两个相等的实数根.①正确:②一元二次方程(为常数)最多有两个解,②错误;③方程的解为,将x=-2代人得,,③正确.故选:B.本题考查的知识点是一元二次方程根的情况,属于比较基础的题目,易于掌握.3、A【解析】
根据特殊的平行四边形的判定即可逐一判断.【详解】解:两组邻边分别相等的四边形不一定是菱形,如AB=AD,CB=CD,但AB≠CB的四边形,故选项A中的命题是假命题,故选项A符合题意;
对角线互相垂直平分的四边形是菱形是真命题,故选项B不符合题意;
四个角相等的四边形是矩形是真命题,故选项C不符合题意;
对角线相等的平行四边形是矩形是真命题,故选项D不符合题意;
故选:A.本题考查命题与定理,解答本题的关键是明确题意,熟练掌握特殊的平行四边形的判定定理,会判断命题的真假.4、A【解析】
先证明四边形BFDE是平行四边形,再根据菱形的判定定理逐项进行分析判断即可.【详解】由题意知:四边形ABCD是平行四边形,∴∠ADC=∠ABC,∠A=∠C,AD=BC,AB=CD,ABCD又∵DE,BF分别是∠ADC和∠ABC的平分线,∴∠ADE=∠FBC,在△ADE和△CBF中∴△ADE≌△CBF(ASA)∴AE=CF,DE=BF又∵AB=CD,ABCD,AE=CF∴DF=BE,DFBE、∴四边形BFDE是平行四边形.A、∵AB//CD,∴∠AED=∠EDC,又∵∠ADE=∠EDC,∴∠ADE=∠AED,∴AD=AE,又∵∠A=60°,∴△ADE是等边三角形,∴AD=AE=DE,无法判断平行四边形BFDE是菱形.B、∵DE=DF,∴平行四边形BFDE是菱形.C、∵EF⊥BD,∴平行四边形BFDE是菱形.D、∵BD是∠EDF的平分线,∴∠EDB=∠FDB,又∵DF//BE,∴∠FDB=∠EBD,∴∠EDB=∠EBD,∴ED=DB,∴平行四边形BFDE是菱形.故选A.本题考查了平行四边形的性质,菱形的判定,正确掌握菱形的判定定理是解题的关键.5、A【解析】
观察函数图象结合点P的坐标,即可得出不等式的解集.【详解】解:观察函数图象,可知:当时,.故选:A.考查了一次函数与一元一次不等式以及一次函数的图象,观察函数图象,找出不等式的解集是解题的关键.6、D【解析】试题分析:∵y=kx+b中,k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小,A选项中,k=1>0,故y的值随着x值的增大而增大;B选项中,k=1>0,故y的值随着x值的增大而增大;C选项中,k=1>0,故y的值随着x值的增大而增大;D选项中,k=-1<0,y的值随着x值的增大而减小;故选D.考点:一次函数的性质.7、C【解析】
根据中心对称图形的概念对各选项分析判断即可得解.【详解】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、是中心对称图形,故本选项正确;D、不是中心对称图形,故本选项错误.故选:C.本题考查了中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180度后两部分重合.8、D【解析】
根据勾股定理逆定理可得此三角形是直角三角形,进而可得答案.【详解】解:∵72+242=252,∴此三角形是直角三角形,∴这个三角形的最大内角是90°,故选D.此题主要考查了勾股定理逆定理,关键是掌握如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.二、填空题(本大题共5个小题,每小题4分,共20分)9、1【解析】
对于任意锐角A,有sinA=cos(90°-A),可得结论.【详解】解:∵sinα=cos35°,∴α=90°-35°=1°,故答案为:1.此题考查互余两角的三角函数,关键是根据互余两角的三角函数的关系解答.10、【解析】
连接DE、CD,先证明四边形DEFC为平行四边形,再求出CD的长,即为EF的长.【详解】连接DE、CD,∵D、E分别是AB、AC的中点,CF=BC∴DE=BC=CF,DE∥BF,∴四边形DEFC为平行四边形,∵BD=AB=,BC=3,AB⊥BF,∴EF=CD=此题主要考查四边形的线段求解,解题的关键是根据题意作出辅助线,求证平行四边形,再进行求解.11、1【解析】
利用三角形面积公式得到AF:FE=3:2,再根据平行四边形的性质得到AD∥BE,S△ABD=S△CBD,则可判断△AFD∽△EFB,利用相似的性质可计算出S△AFD=9,所以S△ABD=S△CBD=15,然后用△BCD的面积减去△BEF的面积得到四边形CDFE的面积.【详解】解:∵△ABF的面积等于6,△BEF的面积等于4,即S△ABF:S△BEF=6:4=3:2,∴AF:FE=3:2,∵四边形ABCD为平行四边形,∴AD∥BE,S△ABD=S△CBD,∴△AFD∽△EFB,∴S△AFD∴S△AFD=94×4=9∴S△ABD=S△CBD=6+9=15,∴四边形CDFE的面积=15-4=1.故答案为1.本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形,灵活运用相似三角形的性质表示线段之间的关系;也考查了平行四边形的性质.12、【解析】【分析】由矩形性质可得AB=CD,BC=AD;由对折得AB=BE,设AB=x,根据勾股定理求出BC关于x的表达式,便可得到.【详解】设AB=x,在矩形ABCD中,AB=CD=x,BC=AD;因为,E为CD的中点,所以,CE=,由对折可知BE=AB=x.在直角三角形BCE中BC=,所以,.故答案为图(略),【点睛】本题考核知识点:矩形性质,轴对称.解题关键点:利用轴对称性质得到相等线段,利用勾股定理得到BE和BC的关系.13、【解析】
根据中位数的定义即可得.【详解】中位数为(0+1)÷2=.故答案是:.考查中位数,掌握:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数是解题的关键.三、解答题(本大题共5个小题,共48分)14、(1),;(2)选拔乙参加比赛.理由见解析.【解析】
(1)先求出平均数,再根据方差的定义求解;(2)比较甲、乙两人的成绩的方差作出判断.【详解】解:(1),,,;(2)因为甲、乙两名同学射击环数的平均数相同,乙同学射击的方差小于甲同学的方差,所以乙同学的成绩较稳定,应选乙参加比赛.本题考查方差的定义与意义:一般地设n个数据,x1,x2,…xn的平均数为,则方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.15、(1)y1=32x;y2=28x+1200;(2)当100<x<300时,在实体店购买省钱,当x=300时,在实体店和网店购买一样,当x>300时,在网店购买省钱.【解析】
(1)根据题意和表格求得用这两种方式购买跳绳所需的资金y(元)与购买的跳绳数x(条)之间的函数关系式即可.(2)比较(1)中求出的两个函数的大小并求出x的范围即可.(3)令y=10000,可以求得两种方式分别可以购买的跳绳数,从而可以得到王先生用不超过10000元购买跳绳,他最多能购买多少条跳绳.【详解】(1)由题意可得:王先生在实体店购买跳绳所需的资金y1(元)与购买的跳绳数x(条)之间的函数关系式为:y1=40x×0.8=32x;王先生在网店购买跳绳所需的资金y2(元)与购买的跳绳数x(条)之间的函数关系式为:y2=40×100+(x-100)×40×0.7=28x+1200;(2)当y1>y2时,32x>28x+1200,解得x>300;当y1=y2时,32x=28x+1200,解得x=300;当y1<y2时,32x>28x+1200,解得x<300;∴当100<x<300时,在实体店购买省钱,当x=300时,在实体店和网店购买一样,当x>300时,在网店购买省钱.本题考查一次函数的应用,明确题意,找出所求问题需要的条件,列出相应的函数关系式,会根据函数的值,求出相应的x的值是解题关键.16、(1),;(2).【解析】
(1)根据待定系数法确定正比例函数和一次函数的解析式即可;
(2)利用三角形面积公式计算解答即可.【详解】(1)把A(3,4)代人中.得:3k=4∴∴过点A作AE⊥x轴,垂足为E.∵A(3,4)∴OE=3,AE=4在Rt△OAE中,又∵OC=OA=5∴.C(0,-5)把A(3,4),C(0,-5)代人中,得∴∴(2)在中,令得∴OB=∴.考查的是一次函数的问题,关键是根据待定系数法求解析式.17、,【解析】
先利用平方差公式化简,可得原式,再代入求解即可.【详解】解:原式.当时,原式.本题考查了分式的化简求值问题,掌握平方差公式、分式的运算法则是解题的关键.18、(1)△PEF的边长为2;(2)PH﹣BE=1,证明见解析;(3)结论不成立,当1<CF<2时,PH=1﹣BE,当2<CF<3时,PH=BE﹣1.【解析】
(1)过P作PQ⊥BC,垂足为Q,由四边形ABCD为矩形,得到∠B为直角,且AD∥BC,得到PQ=AB,又△PEF为等边三角形,根据“三线合一”得到∠FPQ为30°,在Rt△PQF中,设出QF为x,则PF=2x,由PQ的长,根据勾股定理列出关于x的方程,求出x的值,即可得到PF的长,即为等边三角形的边长;(2)PH﹣BE=1,过E作ER垂直于AD,如图所示,首先证明△APH为等腰三角形,在根据矩形的对边平行得到一对内错角相等,可得∠APE=60°,在Rt△PER中,∠REP=30°,根据直角三角形中,30°角所对的直角边等于斜边的一半,由PE求出PR,由PA=PH,则PH﹣BE=PA﹣BE=PA﹣AR=PR,即可得到两线段的关系;(3)当若△PEF的边EF在射线CB上移动时(2)中的结论不成立,由(2)的解题思路可知当1<CF<2时,PH=1﹣BE,当2<CF<3时,PH=BE﹣1.【详解】解:(1)过P作PQ⊥BC于Q(如图1),∵四边形ABCD是矩形,∴∠B=90°,即AB⊥BC,又∵AD∥BC,∴PQ=AB=,∵△PEF是等边三角形,∴∠PFQ=60°,在Rt△PQF中,∠FPQ=30°,设PF=2x,QF=x,PQ=,根据勾股定理得:,解得:x=1,故PF=2,∴△PEF的边长为2;(2)PH﹣BE=1,理由如下:∵在Rt△ABC中,AB=,BC=3,∴由勾股定理得AC=2,∴CD=AC,∴∠CAD=30°∵AD∥BC,∠PFE=60°,∴∠FPD=60°,∴∠PHA=30°=∠CAD,∴PA=PH,∴△APH是等腰三角形,作ER⊥AD于R(如图2)Rt△PER中,∠RPE=60°,∴PR=PE=1,∴PH﹣BE=PA﹣BE=PR=1.(3)结论不成立,当1<CF<2时,PH=1﹣BE,当2<CF<3时,PH=BE﹣1.本题考查相似形综合题.一、填空题(本大题共5个小题,每小题4分,共20分)19、100.1【解析】
先设出y=(x-x1)2+(x-x2)2+(x-x3)2+…+(x-x20)2,然后进行整理得出y=20x2-2(x1+x2+x3+…+x20)x+(x12+x22+x32+…+x202),再求出二次函数的最小值即可.【详解】解:设y=(x-x1)2+(x-x2)2+(x-x3)2+…+(x-x20)2
=x2-2xx1+x12+x2-2xx2+x22+x2-2xx3+x32+…+x2-2xx20+x202
=20x2-2(x1+x2+x3+…+x20)x+(x12+x22+x32+…+x202),
=20x2-2×2019x+(x12+x22+x32+…+x202),
则当x=时,(x-x1)2+(x-x2)2+(x-x3)2+…+(x-x20)2取得最小值,
即当x=100.1时,(x-x1)2+(x-x2)2+(x-x3)2+…+(x-x20)2取得最小值.
故答案为100.1.此题考查了二次函数的性质,关键是设y=(x-x1)2+(x-x2)2+(x-x3)2+…+(x-x20)2,整理出一个二次函数.20、±1【解析】试题分析:根据坐标与图形得到三角形OAB的两边分别为|a|与5,然后根据三角形面积公式有:,解得a=1或a=-1,即a的值为±1.考点:1.三角形的面积;2.坐标与图形性质.21、1.【解析】
根据每个外角都等于相邻内角的,并且外角与相邻的内角互补,就可求出外角的度数;根据外角度数就可求得边数.【详解】解:因为多边形的每个外角和它相邻内角的和为180°,又因为每个外角都等于它相邻内角的,所以外角度数为180°×=36°.∵多边形的外角和为360°,所以n=360÷36=1.故答案为:1.本题考查多边形的内角与外角关系,以及多边形的外角和为360°.22、﹣8【解析】
首先根据题意设出关系式:y=k(x-1),再利用待定系数法把x=3,y=4代入,可得到k的值,再把k的值代入所设的关系式中,然后把x=-3代入即可求得答案.【详解】∵y与x-1成正比例,∴关系式设为:y=k(x-1),∵x=3时,y=4,∴4=k(3-1),解得:k=2,∴y与x的函数关系式为:y=2(x-1)=2x-2,当x=-3时,y=-6-2=-8,故答案为:-8.本题考查了待定系数法求一次函数解析式,关键是设出关系式,代入x,y的值求k.23、【解析】
由条件可求得为等边三角形,则可求得的长,在中,由勾股定理可求得的长.【详解】,,四边形为矩形,为等边三角形,,,在中,由勾股定理可求得.故答案为:.本题主要考查矩形的性质,掌握矩形的对角线相等且互相平分是解题的关键.二、解答题(本大题共3个小题,共30分)24、(1)见解析;(2)①⊙O的半径r=256;②ABC的内心I到点O的距离为【解析】
(1)连接AO,证得EACABC=12∠AOC,∠CAO=90∘-12∠AOC(2)①设⊙O
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《企业质量管理培训》课件
- 2024年新高一数学初升高衔接《三角函数的概念》含答案解析
- 商场租赁合同诉状范本
- 班丹纳方绸围巾市场需求与消费特点分析
- 《活动构造地貌》课件
- 竹工艺品项目可行性实施报告
- 电铁锅产品入市调查研究报告
- 乐器弦市场洞察报告
- 标枪课件教学课件
- 治疗阿尔茨海默氏症的医疗保健服务行业营销策略方案
- 振动筛计算过程详细参考
- 240农业政策学-张广胜课件
- 半条被子(红军长征时期故事) PPT
- 第15课《故乡》说课课件(共19张ppt) 部编版语文九年级上册
- 六年级美术下册第6课《扇面画》优秀课件3人教版
- 单身申明具结书
- 2023年7月贵州省普通高中学业水平考试-数学
- 《旅游线路设计与开发》课程教学大纲
- 基于PLC的工业控制系统设计 -自动药片装瓶控制
- CRRT规范化治疗方案执行课件
- 清创术(debridement)精品课件
评论
0/150
提交评论