版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省绵阳市2025届高二上数学期末监测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知数列满足,,在()A.25 B.30C.32 D.642.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数到与一般的等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列.如数列1,3,6,10,前后两项之差组成新数列2,3,4,新数列2,3,4为等差数列、这样的数列称为二阶等差数列.现有二阶等差数列,其前7项分别为2,3,5,8,12,17,23则该数列的第100项为()A.4862 B.4962C.4852 D.49523.如图,过抛物线的焦点的直线依次交抛物线及准线于点,若且,则抛物线的方程为()A.B.C.D.4.随着城市生活节奏的加快,网上订餐成为很多上班族的选择,下表是某外卖骑手某时间段订餐数量与送餐里程的统计数据表:订餐数/份122331送餐里程/里153045现已求得上表数据的回归方程中的值为1.5,则据此回归模型可以预测,订餐100份外卖骑手所行驶的路程约为()A.155里 B.145里C.147里 D.148里5.在下列函数中,最小值为2的是()A. B.C. D.6.我国新冠肺炎疫情防控进入常态化,各地有序进行疫苗接种工作,下面是我国甲、乙两地连续11天的疫苗接种指数折线图,根据该折线图,下列说法不正确的是()A.这11天甲地指数和乙地指数均有增有减B.第3天至第11天,甲地指数和乙地指数都超过80%C.在这11天期间,乙地指数的增量大于甲地指数的增量D.第9天至第11天,乙地指数的增量大于甲地指数的增量7.设集合,则AB=()A.{2} B.{2,3}C.{3,4} D.{2,3,4}8.古希腊数学家阿基米德利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积,已知椭圆的面积为,、分别是的两个焦点,过的直线交于、两点,若的周长为,则的离心率为()A. B.C. D.9.已知抛物线的焦点为F,,点是抛物线上的动点,则当的值最小时,=()A.1 B.2C. D.410.下列关于函数及其图象的说法正确的是()A.B.最小正周期为C.函数图象的对称中心为点D.函数图象的对称轴方程为11.若曲线的一条切线与直线垂直,则的方程为()A. B.C. D.12.已知点分别为圆与圆的任意一点,则的取值范围是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在平面上给定相异两点A,B,点P满足,则当且时,P点的轨迹是一个圆,我们称这个圆为阿波罗尼斯圆.已知椭圆的离心率,A,B为椭圆的长轴端点,C,D为椭圆的短轴端点,动点P满足,若的面积的最大值为3,则面积的最小值为___________.14.已知数列是递增等比数列,,则数列的前项和等于.15.若分别是平面的法向量,且,,,则的值为________.16.以点为圆心,为半径的圆的标准方程是_____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥P-ABCD中,底面ABCD,,,且,,点E为棱PC的动点.(1)当点E是棱PC的中点时,求直线BE与平面PBD所成角的正弦值;(2)若E为棱PC上任一点,满足,求二面角P-AB-E的余弦值.18.(12分)已知数列的前项和分别是,满足,,且.(1)求数列的通项公式;(2)若数列对任意都有恒成立,求.19.(12分)如图,在四棱锥中,底面为直角梯形,底面分别为的中点,(1)求证:平面平面;(2)求二面角的大小20.(12分)(1)解不等式;(2)若关于x的不等式解集为R,求实数k的取值范围.21.(12分)已知直线l:2mx-y-8m-3=0和圆C:x2+y2-6x+12y+20=0.(1)m∈R时,证明l与C总相交;(2)m取何值时,l被C截得的弦长最短?求此弦长22.(10分)已知等差数列满足:,,数列的前n项和为(1)求及;(2)设是首项为1,公比为3的等比数列,求数列的前项和
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据题中条件,得出数列公差,进而可求出结果.【详解】由得,所以数列是以为公差的等差数列,又,所以.故选:A.【点睛】本题主要考查等差数列的基本量运算,属于基础题型.2、D【解析】根据题意可得数列2,3,5,8,12,17,23,,满足:,,从而利用累加法即可求出,进一步即可得到的值【详解】2,3,5,8,12,17,23,后项减前项可得1,2,3,4,5,6,所以,所以.所以.故选:D3、D【解析】如图根据抛物线定义可知,进而推断出的值,在直角三角形中求得,进而根据,利用比例线段的性质可求得,则抛物线方程可得.【详解】如图分别过点,作准线的垂线,分别交准线于点,设,则由已知得:,由定义得:,故在直角三角形中,,,,从而得,,求得,所以抛物线的方程为故选:D4、C【解析】由统计数据求样本中心,根据样本中心在回归直线上求得,即可得回归方程,进而估计时的y值即可.【详解】由题意:,,则,可得,故,当时,.故选:C5、C【解析】结合基本不等式的知识对选项逐一分析,由此确定正确选项.【详解】对于A选项,时,为负数,A错误.对于B选项,,,,但不存在使成立,所以B错误.对于C选项,,当且仅当时等号成立,C正确.对于D选项,,,,但不存在使成立,所以D错误.故选:C6、C【解析】由折线图逐项分析得到答案.【详解】对于选项A,从折线图中可以直接观察出甲地和乙地的指数有增有减,故选项A正确;对于选项B,从第3天至第11天,甲地指数和乙地指数都超过80%,故选项B正确;对于选项C,从折线图上可以看出这11天甲的增量大于乙的增量,故选项C错误;对于选项D,从折线图上可以看出第9天至第11天,乙地指数的增量大于甲地指数的增量,故D正确;故选:C.7、B【解析】按交集定义求解即可.【详解】AB={2,3}故选:B8、A【解析】本题首先可根据题意得出,然后根据的周长为得出,最后根据求出的值,即可求出的离心率.【详解】因为椭圆的面积为,所以长半轴长与短半轴长的乘积,因为的周长为,所以根据椭圆的定义易知,,,,则的离心率,故选:A.9、B【解析】根据抛物线定义,转化,要使有最小值,只需最大,即直线与抛物线相切,联立直线方程与抛物线方程,求出斜率,然后求出点坐标,即可求解.【详解】由题知,抛物线的准线方程为,,过P作垂直于准线于,连接,由抛物线定义知.由正弦函数知,要使最小值,即最小,即最大,即直线斜率最大,即直线与抛物线相切.设所在的直线方程为:,联立抛物线方程:,整理得:则,解得即,解得,代入得或,再利用焦半径公式得故选:B.关键点睛:本题考查抛物线的性质,直线与抛物线的位置关系,解题的关键是要将取最小值转化为直线斜率最大,再转化为抛物线的切线,考查学生的转化思想与运算求解能力,属于中档题.10、D【解析】化简,利用正弦型函数的性质,依次判断,即可【详解】∵∴,A选项错误;的最小正周期为,B选项错误;令,则,故函数图象的对称中心为点,C选项错误;令,则,所以函数图象的对称轴方程为,D选项正确故选:D11、A【解析】两直线垂直,斜率之积为,曲线与直线相切,联立方程令.【详解】法一:直线,所以,所以切线的,设切线的方程为,联立方程,所以,令,解得,所以切线方程为.法二:直线,所以,所以切线的,,所以令,所以,带入曲线方程得切点坐标为,所以切线方程为,化简得.故选:A.12、B【解析】先判定两圆的位置关系为相离的关系,然后利用几何方法得到的取值范围.【详解】的圆心为,半径,的圆心为,半径,圆心距,∴两圆相离,∴,故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先根据求出圆的方程,再由的面积的最大值结合离心率求出和的值,进而求出面积的最小值.【详解】解:由题意,设,,因为即两边平方整理得:所以圆心为,半径因为的面积的最大值为3所以,解得:因为椭圆离心率即,所以由得:所以面积的最小值为:故答案为:.【点睛】思路点睛:本题先根据已知的比例关系求出阿波罗尼斯圆的方程,再利用已知面积和离心率求出椭圆的方程,进而求得面积的最值.14、【解析】由题意,,解得或者,而数列是递增的等比数列,所以,即,所以,因而数列的前项和,故答案为.考点:1.等比数列的性质;2.等比数列的前项和公式.15、-1或-2【解析】由题可得,即求.【详解】依题意,,解得或.故答案为:或.16、【解析】直接根据已知写出圆的标准方程得解.【详解】解:由题得圆的标准方程为.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由题意可得两两垂直,所以以为原点,以所在的直线分别为轴,建立空间直角坐标系,利用空间向量求解,(2)设,表示出点的坐标,然后根据求出的值,从而可得点的坐标,然后利用空间向量求二面角【小问1详解】因为底面ABCD,平面,所以因为,所以两两垂直,所以以为原点,以所在的直线分别为轴,建立空间直角坐标系,如图所示,因为,,点E为棱PC的动点,所以,所以,,设平面的法向量为,则,令,则设直线BE与平面PBD所成角为,则,所以直线BE与平面PBD所成角的正弦值为,【小问2详解】,因为E为棱PC上任一点,所以设,所以,因为,所以,解得,所以,设平面的法向量为,则,令,则,取平面的一个法向量为,设二面角P-AB-E的平面角为,由图可知为锐角,则,所以二面角P-AB-E余弦值为18、(1),(2)【解析】(1)根据已知递推关系式再写一式,然后两式相减,由等差数列、等比数列的定义即可求解;(2)根据已知递推关系式再写一式,然后两式相减,求出,最后利用错位相减法即可得答案.【小问1详解】解:因为,,所以,,得,所以是以2为首项2为公差的等差数列,是以1为首项2为公差的等差数列,所以,,所以;因为,所以,又由得,所以是以2为首项2为公比的等比数列,所以.【小问2详解】解:当时,,当时,,得,即,记,则,,则.19、(1)证明见解析(2)【解析】(1)依题意可得平行四边形是矩形,即可得到,再由及面面垂直的性质定理得到平面,从而得到,即可得到平面,从而得证;(2)建立空间直角坐标系,利用空间向量法求出二面角的余弦值,即可得解;【小问1详解】证明:因为为的中点,,所以,又,所以四边形为平行四边形,因为,所以平行四边形是矩形,所以,因为,所以,又因为平面平面,平面平面面,所以平面,因为面,所以,又因为,平面,所以平面,因为平面,所以平面平面;【小问2详解】解:由(1)可得:两两垂直,如图,分别以所在的直线为轴建立空间直角坐标系,则则,设平面的一个法向量,由则,令,则,所以,设平面的一个法向量,所以,根据图像可知二面角为锐二面角,所以二面角的大小为;20、(1);(2).【解析】(1)直接求解不含参数的一元二次不等式即可;(2)分与两种情况进行讨论即可求出结果.【详解】(1)不等式可化为,解集为(2)若的解集为R,当时,的解集为,不合题意;当时,则解得综上,实数k的取值范围是21、(1)证明见解析;(2)当时,l被C截得的弦长最短,最短弦长为.【解析】(1)求出直线l的定点,进而判断定点和圆C的位置关系,最后得到答案;(2)当圆心C到直线l的距离最大时,弦长最短,进而求出m,然后根据勾股定理求出弦长.【详解】(1)直线l的方程可化为y+3=2m(x-4),则l过定点P(4,-3),由于42+(-3)2-6×4+12×(-3)+20=-15<0,所以点P在圆内,故直线l与圆C总相交(2)圆的C方程可化为:(x-3)2+(y+6)2=25,如图所示,当圆心C(3,-6)到直线l的距离最大时,弦AB的长度最短,此时PC⊥l,又,所以直线l的斜率为,则,在直角中,|PC|=,|AC|=5,所以|AB|=.故当时,l被C截得的弦长最短,最短弦长为.22、(1);(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论