云南省剑川县第一中学2025届高二上数学期末学业水平测试模拟试题含解析_第1页
云南省剑川县第一中学2025届高二上数学期末学业水平测试模拟试题含解析_第2页
云南省剑川县第一中学2025届高二上数学期末学业水平测试模拟试题含解析_第3页
云南省剑川县第一中学2025届高二上数学期末学业水平测试模拟试题含解析_第4页
云南省剑川县第一中学2025届高二上数学期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省剑川县第一中学2025届高二上数学期末学业水平测试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.向量,向量,若,则实数()A. B.1C. D.2.如图,在平行六面体中,为与的交点,若,,,则的值为()A. B.C. D.3.已知,为正实数,且,则的最小值为()A. B.C. D.14.设抛物线的焦点为,点为抛物线上一点,点坐标为,则的最小值为()A. B.C. D.5.设等差数列,的前n项和分别是,若,则()A. B.C. D.6.下列命题中,结论为真命题的组合是()①“”是“直线与直线相互垂直”的充分而不必要条件②若命题“”为假命题,则命题一定是假命题③是的必要不充分条件④双曲线被点平分的弦所在的直线方程为⑤已知过点的直线与圆的交点个数有2个.A.①③④ B.②③④C.①③⑤ D.①②⑤7.由直线上的点向圆引切线,则切线长的最小值为()A. B.C.4 D.28.如图,在正三棱柱中,若,则C到直线的距离为()A. B.C. D.9.记不超过x的最大整数为,如,.已知数列的通项公式,则使的正整数n的最大值为()A.5 B.6C.15 D.1610.直线是双曲线的一条渐近线,,分别是双曲线左、右焦点,P是双曲线上一点,且,则()A.2 B.6C.8 D.1011.数列,则是这个数列的第()A.项 B.项C.项 D.项12.在等比数列中,,,则()A. B.或C. D.或二、填空题:本题共4小题,每小题5分,共20分。13.抛物线焦点坐标是,则______14.若正实数满足则的最小值为________________________15.函数,若,则的值等于_______16.在单位正方体中,点E为AD的中点,过点B,E,的平面截该正方体所得的截面面积为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知在公差不为0的等差数列中,,且构成等比数列的前三项(1)求数列,的通项公式;(2)设数列___________,求数列的前项和请在①;②;③这三个条件中选择一个,补充在上面的横线上,并完成解答18.(12分)已知圆的圆心在第一象限内,圆关于直线对称,与轴相切,被直线截得的弦长为.(1)求圆的方程;(2)若点,求过点的圆的切线方程.19.(12分)从椭圆上一点P向x轴作垂线,垂足恰为左焦点,A是椭圆C与x轴正半轴的交点,直线AP的斜率为,若椭圆长轴长为8(1)求椭圆C的方程;(2)点Q为椭圆上任意一点,求面积的最大值20.(12分)已知抛物线C:y2=2px(p>0)的焦点为F,P(5,a)为抛物线C上一点,且|PF|=8(1)求抛物线C的方程;(2)过点F的直线l与抛物线C交于A,B两点,以线段AB为直径的圆过Q(0,﹣3),求直线l的方程21.(12分)已知椭圆的左、右焦点分别为、,离心率,且过点(1)求椭圆C的方程;(2)已知过的直线l交椭圆C于A、B两点,试探究在平面内是否存在定点Q,使得是一个确定的常数?若存在,求出点Q的坐标;若不存在,说明理由22.(10分)已知焦点为F的抛物线上一点到F的距离是4(1)求抛物线C的方程(2)若不过原点O的直线l与抛物线C交于A,B两点(A,B位于x轴两侧),C的准线与x轴交于点E,直线与分别交于点M,N,若,证明:直线l过定点

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】由空间向量垂直的坐标表示列方程即可求解.【详解】因为向量,向量,若,则,解得:,故选:C.2、D【解析】将用基底表示,然后利用空间向量数量积的运算性质可求得结果.【详解】因为四边形为平行四边形,且,则为的中点,,则.故选:D3、D【解析】利用基本不等式可求的最小值.【详解】可化为,由基本不等式可得,故,当且仅当时等号成立,故的最小值为1,故选:D.4、B【解析】设点P在准线上的射影为D,则根据抛物线的定义可知|PF|=|PD|,进而把问题转化为求|PM|+|PD|的最小值,即可求解【详解】解:由题意,设点P在准线上的射影为D,则根据抛物线的定义可知|PF|=|PD|,所以要求|PM|+|PF|的最小值,即求|PM|+|PD|的最小值,当D,P,M三点共线时,|PM|+|PD|取得最小值为故选:B5、C【解析】结合等差数列前项和公式求得正确答案.【详解】依题意等差数列,的前n项和分别是,由于,故可设,,当时,,,所以,所以.故选:C6、C【解析】求出两直线垂直时m值判断①;由复合命题真值表可判断②;化简不等式结合充分条件、必要条件定义判断③;联立直线与双曲线的方程组成的方程组验证判断④;判定点与圆的位置关系判断⑤作答.【详解】若直线与直线相互垂直,则,解得或,则“”是“直线与直线相互垂直”的充分而不必要条件,①正确;命题“”为假命题,则与至少一个是假命题,不能推出一定是假命题,②不正确;,,则是的必要不充分条件,③正确;由消去y并整理得:,,即直线与双曲线没有公共点,④不正确;点在圆上,则直线与圆至少有一个公共点,而过点与圆相切的直线为,直线不包含,因此,直线与圆相交,有两个交点,⑤正确,所以所有真命题的序号是①③⑤.故选:C7、D【解析】切点与圆心的连线垂直于切线,切线长转化为直线上点与圆心连线和半径的关系,利用点到直线的距离公式求出圆心与直线上点距离的最小值,结合勾股定理即可得出结果.【详解】设为直线上任意一点,,切线长的最小值为:,故选:D.8、D【解析】取AC的中点O,建立如图所示的空间直角坐标系,根据点到线距离的向量求法和投影的定义计算即可.【详解】由题意知,,取AC的中点O,则,建立如图所示的空间直角坐标系,则,所以,所以在上的投影的长度为,故点C到直线距离为:.故选:D9、C【解析】根据取整函数的定义,可求出的值,即可得到答案;【详解】,,,,,,当时,,使的正整数n的最大值为,故选:C10、C【解析】根据渐近线可求出a,再由双曲线定义可求解.【详解】因为直线是双曲线的一条渐近线,所以,,又或,或(舍去),故选:C11、A【解析】根据数列的规律,求出通项公式,进而求出是这个数列的第几项【详解】数列为,故通项公式为,是这个数列的第项.故选:A.12、C【解析】计算出等比数列的公比,即可求得的值.【详解】设等比数列的公比为,则,则,所以,.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】根据抛物线的几何性质直接求解可得.【详解】的焦点坐标为,即.故答案为:214、【解析】利用基本不等式即可求解.【详解】,,又,,,当且仅当即,等号成立,.故答案为:【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.15、【解析】对函数进行求导,把代入导函数中,化简即可求出的值.【详解】函数.故答案为:.16、【解析】根据题意,取的中点,连接、、、,分析可得四边形为平行四边形,则要求的截面就是四边形,进而可得为菱形,连接、,求出、的长,计算可得答案【详解】根据题意,取的中点,连接、、、,易得,,则四边形为平行四边形,过点,,的截面就是,又由正方体为单位正方体,则,则为菱形,连接、,易得,,则,即要求截面的面积为,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),(2)答案见解析【解析】(1)设的公差为,根据等比中项的性质得到,即可求,从而求出的通项公式,所以,即可求出等比数列的公比,从而求出的通项公式;(2)若选①:则,利用裂项相消法求和即可;若选②:则,根据等比数列求和公式计算可得;若选③:则利用分组求和法求和即可;【小问1详解】解:设的公差为,成等比数列,,,解得或,,,即,,的公比,,【小问2详解】解:若选①:则,;若选②:则,;若选③:则,.18、(1)(2)或【解析】(1)结合点到直线的距离公式、弦长公式求得,由此求得圆的方程.(2)根据过的圆的切线的斜率是否存在进行分类讨论,结合点到直线的距离公式求得切线方程.【小问1详解】由题意,设圆的标准方程为:,圆关于直线对称,圆与轴相切:…①点到的距离为:,圆被直线截得的弦长为,,结合①有:,,又,,,圆的标准方程为:.【小问2详解】当直线的斜率不存在时,满足题意当直线的斜率存在时,设直线的斜率为,则方程为.又圆C的圆心为,半径,由,解得.所以直线方程为,即即直线的方程为或.19、(1)(2)18【解析】(1)易得,,进而有,再结合已知即可求解;(2)由(1)易得直线AP的方程为,,设与直线AP平行的直线方程为,由题意,当该直线与椭圆相切时,记与AP距离比较远的直线与椭圆的切点为Q,此时的面积取得最大值,将代入椭圆方程,联立即可得与AP距离比较远的切线方程,从而即可求解.【小问1详解】解:由题意,将代入椭圆方程,得,又∵,∴,化简得,解得,又,,所以,∴,∴椭圆的方程为;【小问2详解】解:由(1)知,直线AP的方程为,即,设与直线AP平行的直线方程为,由题意,当该直线与椭圆相切时,记与AP距离比较远的直线与椭圆的切点为Q,此时的面积取得最大值,将代入椭圆方程,化简可得,由,即,解得,所以与AP距离比较远的切线方程,因为与之间的距离,又,所以的面积的最大值为20、(1);(2)2x﹣y﹣6=0﹒【解析】(1)根据抛物线焦半径公式构造方程求得,从而得到结果(2)设直线,代入抛物线方程可得韦达定理的形式,根据可构造方程求得,从而得到直线方程【小问1详解】由抛物线定义可知:,解得:,抛物线的方程为:【小问2详解】由抛物线方程知:,设直线,,,,,联立方程,得:,,,以线段为直径的圆过点,,,解得:,直线的方程为:,即21、(1)(2)存在,定点【解析】(1)根据已知条件求得,由此求得椭圆的方程.(2)对直线的斜率是否存在进行分类讨论,设出直线的方程并与椭圆方程联立,结合是常数列方程,从而求得定点的坐标.小问1详解】,,由题可得:.【小问2详解】当直线AB的斜率存在时,设直线AB的方程为,设,,联立方程组,整理得,可得,所以则恒成立,则,解得,,,此时,即存在定点满足条件当直线AB的斜率不存在时,直线AB的方程为x=-2,可得,,设要使得是一个常数,即,显然,也使得成立;综上所述:存在定点满足条件.22、(1);(2)证明过程见解析.【解析】(1)利用抛物

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论