版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届北京市西城区徐悲鸿中学数学高二上期末达标检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知数列中,,则()A. B.C. D.2.已知,,且,则()A. B.C. D.3.如图,点A的坐标为,点C的坐标为,函数,若在矩形内随机取一点,则此点取自阴影部分的概率等于()A. B.C. D.4.某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校男教师的人数为()A.167 B.137C.123 D.1135.已知等比数列的公比为正数,且,,则()A.4 B.2C.1 D.6.函数的定义域是,,对任意,,则不等式的解集为()A. B.C.或 D.或7.设函数是奇函数的导函数,且,当时,,则不等式的解集为()A. B.C. D.8.已知抛物线,过点作抛物线的两条切线,点为切点.若的面积不大于,则的取值范围是()A. B.C. D.9.已知是抛物线上的点,F是抛物线C的焦点,若,则()A.1011 B.2020C.2021 D.202210.已知等比数列的公比为q,且,则“”是“是递增数列”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件11.已知椭圆:的左、右焦点分别为,,点P是椭圆上的动点,,,则的最小值为()A. B.C D.12.已知双曲线C1的一条渐近线方程为y=kx,离心率为e1,双曲线C2的一条渐近线方程为y=x,离心率为e2,且双曲线C1、C2在第一象限交于点(1,1),则=()A.|k| B.C.1 D.2二、填空题:本题共4小题,每小题5分,共20分。13.曲线在点处的切线方程为______14.在数列中,,,,若数列是递减数列,数列是递增数列,则______15.在空间直角坐标系中,经过且法向量的平面方程为,经过且方向向量的直线方程为阅读上面材料,并解决下列问题:给出平面的方程,经过点的直线的方程为,则直线l与平面所成角的余弦值为___________.16.等差数列前项之和为,若,则________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,分别是椭圆C:的左,右焦点,点P在椭圆C上,轴,点A是椭圆与x轴正半轴的交点,点B是椭圆与y轴正半轴的交点,且,.(1)求椭圆C的方程;(2)已知M,N是椭圆C上的两点,若点,,试探究点M,,N是否一定共线?说明理由.18.(12分)已知动圆过点且动圆内切于定圆:记动圆圆心的轨迹为曲线.(1)求曲线方程;(2)若、是曲线上两点,点满足求直线的方程.19.(12分)三棱锥中,,,,直线与平面所成的角为,点在线段上.(1)求证:;(2)若点在上,满足,点满足,求实数使得二面角的余弦值为.20.(12分)已知是边长为2的正方形,正方形绕旋转形成一个圆柱;(1)求该圆柱的表面积;(2)正方形绕顺时针旋转至,求异面直线与所成角的大小21.(12分)已知各项为正数的等比数列中,,.(1)求数列的通项公式;(2)设,求数列的前n项和.22.(10分)已知抛物线C:y2=2px(p>0)的焦点为F,P(5,a)为抛物线C上一点,且|PF|=8(1)求抛物线C的方程;(2)过点F的直线l与抛物线C交于A,B两点,以线段AB为直径的圆过Q(0,﹣3),求直线l的方程
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由数列的递推公式依次去求,直到求出即可.【详解】由,可得,,,故选:D.2、D【解析】利用空间向量共线的坐标表示可求得、的值,即可得解.【详解】因为,则,所以,,,因此,.故选:D3、A【解析】分别由矩形面积公式与微积分几何意义计算阴影部分和矩形部分的面积,最后由几何概型概率计算公式计算即可.【详解】由已知,矩形的面积为4,阴影部分的面积为,由几何概型公式可得此点取自阴影部分的概率等于,故选:A4、C【解析】根据图形分别求出初中部和高中部男教师的人数,最后相加即可.【详解】初中部男教师的人数为110×(170%)=33;高中部男教师的人数为150×60%=90,∴该校男教师的人数为33+90=123.故选:C.5、D【解析】设等比数列的公比为(),则由已知条件列方程组可求出【详解】设等比数列的公比为(),由题意得,且,即,,因为,所以,,故选:D6、A【解析】构造函数,结合已知条件可得恒成立,可得为上的减函数,再由,从而将不等式转换为,根据单调性即可求解.【详解】构造函数,因为,所以为上的增函数又因为,所以原不等式转化为,即,解得.所以原不等式的解集为,故选:A.7、D【解析】设,则,分析可得为偶函数且,求出的导数,分析可得在上为减函数,进而分析可得上,,在上,,结合函数的奇偶性可得上,,在上,,又由即,则有或,据此分析可得答案【详解】根据题意,设,则,若奇函数,则,则有,即函数为偶函数,又由,则,则,,又由当时,,则在上为减函数,又由,则在上,,在上,,又由为偶函数,则在上,,在上,,即,则有或,故或,即不等式的解集为;故选:D8、C【解析】由题意,设,直线方程为,则由点到直线的距离公式求出点到直线的距离,再联立直线与抛物线方程,由韦达定理及弦长公式求出,进而可得,结合即可得答案.【详解】解:因为抛物线的性质:在抛物线上任意一点处的切线方程为,设,所以在点处的切线方程为,在点B处的切线方程为,因为两条切线都经过点,所以,,所以直线的方程为,即,点到直线的距离为,联立直线与抛物线方程有,消去得,由得,,由韦达定理得,所以弦长,所以,整理得,即,解得,又所以.故选:C.9、C【解析】结合向量坐标运算以及抛物线的定义求得正确答案.【详解】设,因为是抛物线上的点,F是抛物线C的焦点,所以,准线为:,因此,所以,即,由抛物线的定义可得,所以故选:C10、B【解析】利用充分条件和必要条件的定义结合等比数列的性质分析判断【详解】当时,则,则数列为递减数列,当是递增数列时,,因为,所以,则可得,所以“”是“是递增数列”的必要不充分条件,故选:B11、A【解析】由椭圆的定义可得;利用基本不等式,若,则,当且仅当时取等号.【详解】根据椭圆的定义可知,,即,因为,,所以,当且仅当,时等号成立.故选:A12、C【解析】根据渐近线方程设出双曲线方程,再由过点,可知双曲线方程,从而可求离心率.【详解】由题,设双曲线的方程为,又因为其过,且可知,不妨设,代入,得,所以双曲线的方程为,所以,同理可得双曲线的方程为,所以可得,所以,当时,结论依然成立.故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】求导后令求出切线斜率,即可写出切线方程.【详解】由题意知:,当时,,故切线方程为,即.故答案为:.14、【解析】根据所给条件可归纳出当时,,利用迭代法即可求解.【详解】因为,,,所以,即,,且是递减数列,数列是递增数列或(舍去),,,故可得当时,,故答案为:15、##【解析】根据材料结合已知条件求得平面的法向量以及直线的方向向量,即可用向量法求得线面角.【详解】因为平面的方程,不妨令,则,故其过点,设其法向量为,根据题意则,即,又平面的方程为,则,不妨取,则,则平面的法向量;经过点的直线的方程为,不妨取,则,则该直线过点,则直线的方向向量.设直线与平面所成的角为,则.又,故,即直线l与平面所成角的余弦值为.故答案为:.16、【解析】直接利用等差数列前项和公式和等差数列的性质求解即可.【详解】由已知条件得,故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)不一定共线,理由见解析【解析】(1)由椭圆定义可得a,利用∽△BOA可解;(2)考察轴时的情况,分析可知M,,N不一定共线.【小问1详解】由题意得,,设,,代入椭圆C的方程得,,可得.可得.由,,所以∽△BOA,所以,即,可得.又,,得.所以椭圆C的方程为.【小问2详解】当轴时,,设,,则由已知条件和方程,可得,整理得,,解得或.由于,所以当时,点M,,N共线;所以当时,点M,,N不共线.所以点M,,N不一定共线.18、(1);(2).【解析】(1)根据两圆内切,以及圆过定点列式求轨迹方程;(2)利用重心坐标公式可知,,再设直线的方程为与椭圆方程联立,利用根与系数的关系求解直线方程.【详解】(1)由已知可得,两式相加可得则点的轨迹是以、为焦点,长轴长为的椭圆,则因此曲线的方程是(2)因为,则点是的重心,易得直线的斜率存在,设直线的方程为,联立消得:且①②由①②解得则直线的方程为即【点睛】本题考查直线与椭圆的问题关系,本题的关键是根据求得,.19、(1)证明见解析;(2).【解析】(1)证明平面,利用线面垂直的性质可证得结论成立;(2)设,以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,利用空间向量法可得出关于实数的等式,即可解得实数的值.【小问1详解】证明:因为,,则且,,平面,所以为直线与平面所成的线面角,即,,故,,,平面,平面,因此,.【小问2详解】解:设,由(1)可知且,,因为平面,,以点为坐标原点,、、所在直线分别为、、轴建立如下图所示的空间直角坐标系,则、、、、,设平面的法向量为,,,则,取,可得,设平面的法向量为,,,由,取,则,由已知可得,解得.当点为线段的中点时,二面角的平面角为锐角,合乎题意.综上所述,.20、(1)(2)【解析】(1)利用表面积公式直接计算得到答案.(2)连接和,,故即为异面直线与所成角,证明,根据长度关系得到答案.【小问1详解】【小问2详解】如图所示:连接和,,故即为异面直线与所成角,,,,故平面,平面,故,,故,直角中,,,,故异面直线与所成角的大小为.21、(1);(2)【解析
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论