版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届四川省资阳市乐至县宝林中学高一数学第一学期期末教学质量检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知定义在R上的奇函数f(x)满足,当时,,则()A. B.C. D.2.设全集,集合,则等于A. B.C. D.3.已知正三棱锥P—ABC(顶点在底面的射影是底面正三角形的中心)的侧面是顶角为30°腰长为2的等腰三角形,若过A的截面与棱PB,PC分别交于点D和点E,则截面△ADE周长的最小值是()A. B.2C. D.24.下列函数中为奇函数的是()A. B.C. D.5.若方程x2+2x+m2+3m=mcos(x+1)+7有且仅有1个实数根,则实数m的值为()A.2 B.-2C.4 D.-46.设正实数满足,则的最大值为()A. B.C. D.7.为了得到函数的图象,可以将函数的图象()A.向左平移个单位长度得到 B.向右平移个单位长度得到C.向左平移个单位长度得到 D.向右平移个单位长度得到8.集合,集合,则等于()A. B.C. D.9.已知,且,则的最小值为()A.3 B.4C.5 D.610.已知是关于x的一元二次不等式的解集,则的最小值为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.cos(-225°)=______12.已知函数,则下列说法正确的有________.①的图象可由的图象向右平移个单位长度得到②在上单调递增③在内有2个零点④在上的最大值为13.点是一次函数图象上一动点,则的最小值是______14.在矩形ABCD中,AB=2,AD=1.设①当时,t=___________;②若,则t的最大值是___________15.不等式的解集为___________.16.函数的定义域是__________,值域是__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知不过第二象限的直线l:ax-y-4=0与圆x2+(y-1)2=5相切(1)求直线l的方程;(2)若直线l1过点(3,-1)且与直线l平行,直线l2与直线l1关于直线y=1对称,求直线l2的方程18.已知函数.(1)求的最小正周期;(2)若,求的值域.19.在三棱柱中,侧棱底面,点是的中点.(1)求证:;(2)求证:;(3)求直线与平面所成的角的正切值.20.△ABC中,A(3,-1),AB边上的中线CM所在直线方程为:6x+10y-59=0,∠B的平分线方程BT为:x-4y+10=0,求直线BC的方程.21.计算:(1);(2)若,求的值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】由题意得,因为,则,所以函数表示以为周期的周期函数,又因为为奇函数,所以,所以,,,所以,故选B.2、A【解析】,=3、D【解析】可以将三棱锥侧面展开,将计算周长最小值转化成计算两点间距离最小值,解三角形,即可得出答案.【详解】将三棱锥的侧面展开,如图则将求截面周长的最小值,转化成计算的最短距离,结合题意可知=,,所以,故周长最小值为,故选D.【点睛】本道题目考查了解三角形的知识,可以将空间计算周长最小值转化层平面计算两点间的最小值,即可.4、D【解析】利用奇函数的定义逐个分析判断【详解】对于A,定义域为,因为,所以是偶函数,所以A错误,对于B,定义域为,因为,且,所以是非奇非偶函数,所以B错误,对于C,定义域为,因为定义域不关于原点对称,所以是非奇非偶函数,所以C错误,对于D,定义域为,因为,所以是奇函数,所以D正确,故选:D5、A【解析】令,由对称轴为,可得,解出,并验证即可.【详解】依题意,有且仅有1个实数根.令,对称轴为.所以,解得或.当时,,易知是连续函数,又,,所以在上也必有零点,此时不止有一个零点,故不合题意;当时,,此时只有一个零点,故符合题意.综上,.故选:A【点睛】关键点点睛:构造函数,求出的对称轴,利用对称的性质得出.6、C【解析】根据基本不等式可求得最值.【详解】由基本不等式可得,即,解得,当且仅当,即,时,取等号,故选:C.7、A【解析】先利用辅助角公式将函数变形,然后利用图象的平移变换分析求解即可【详解】解:函数,将函数图象向左平移个单位可得的图象故选:8、B【解析】直接利用交集的定义求解即可.【详解】由题得.故选:B9、C【解析】依题意可得,则,再利用基本不等式计算可得;【详解】解:因为且,所以,所以当且仅当,即,时取等号;所以的最小值为故选:C【点睛】利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方10、C【解析】由题知,,,则可得,则,利用基本不等式“1”的妙用来求出最小值.【详解】由题知是关于x的一元二次方程的两个不同的实数根,则有,,,所以,且是两个不同的正数,则有,当且仅当时,等号成立,故的最小值是.故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】直接利用诱导公式求知【详解】【点睛】本题考查利用诱导公式求知,一般按照以下几个步骤:负化正,大化小,划到锐角为终了同时在转化时需注意“奇变偶不变,符号看象限.”12、②③【解析】化简函数,结合三角函数的图象变换,可判定①不正确;根据正弦型函数的单调的方法,可判定②正确;令,求得,可判定③正确;由,得到,结合三角函数的性质,可判定④正确.【详解】由函数,对于①中,将函数的图象向右平移个单位长度,得到,所以①不正确;对于②中,令,解得,当时,可得,即函数在上单调递增,所以函数在上单调递增,所以②正确;对于③中,令,可得,解得,当时,可得;当时,可得,所以内有2个零点,所以③正确;对于④中,由,可得,当时,即时,函数取得最大值,最大值为,所以④不正确.故答案为:②③.13、【解析】把点代入函数的解析式得到,然后利用基本不等式求最小值.【详解】由题意可知,又因为,所以,当且仅当即时等号成立所以的最小值是.故答案为:.14、①.0②.【解析】利用坐标法可得,结合条件及完全平方数的最值即得.【详解】由题可建立平面直角坐标系,则,∴,∴,∴当时,,因为,要使t最大,可取,即时,t取得最大值是.故答案为:0;.15、【解析】根据对数函数的单调性解不等式即可.【详解】由题设,可得:,则,∴不等式解集为.故答案:.16、①.②.【解析】解不等式可得出原函数的定义域,利用二次函数的基本性质可得出原函数的值域.详解】对于函数,有,即,解得,且.因此,函数的定义域为,值域为.故答案为:;.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)2x-y-4=0(2)2x+y-9=0【解析】(1)利用直线l与圆x2+(y-1)2=5相切,,结合直线l不过第二象限,求出a,即可求直线l的方程;(2)直线l1的方程为2x-y+b=0,直线l1过点(3,-1),求出b,即可求出直线l1的方程;利用直线l2与l1关于y=1对称,求出直线的斜率,即可求直线l2的方程【详解】(1)∵直线l与圆x2+(y-1)2=5相切,∴,∵直线l不过第二象限,∴a=2,∴直线l的方程为2x-y-4=0;(2)∵直线l1过点(3,-1)且与直线l平行,∴直线l1方程为2x-y+b=0,∵直线l1过点(3,-1),∴b=-7,则直线l1的方程为2x-y-7=0,∵直线l2与l1关于y=1对称,∴直线l2的斜率为-2,且过点(4,1),∴直线l2的斜率为y-1=-2(x-4),即化简得2x+y-9=0【点睛】本题考查直线方程,考查直线与直线的位置关系,属于中档题18、(1)最小正周期;(2).【解析】(1)先利用余弦的二倍角公式和两角差的正弦化简后,再由辅助角公式化简,利用周期公式求周期;(2)由x的范围求出的范围,再由正弦函数的有界性求f(x)的值域.【详解】由已知(1)函数的最小正周期;(2)因为,所以所以,所以.【点睛】本题考查三角函数的周期性、值域及两角和与差的正弦、二倍角公式,关键点是对的解析式利用公式进行化简,考查学生的基础知识、计算能力,难度不大,综合性较强,属于简单题.19、(1)见解析(2)见解析(3)【解析】【试题分析】(1)依据题设运用线面平行的判定定理进行分析推证;(2)借助题设条件先证明线面垂直,再运用线面垂直的性质定理进行推证;(3)先运用线面角的定义找出线面角,再运用解三角形求其正切值:(1)如图,令分别为的中点,又∵(2)证明:∠⊥在直三棱柱中,⊥又⊥平面,又⊥(3)由(2)得AC⊥平面∴直线是斜线在平面上的射影∴是直线与平面所成的角.在中,∴,即求直线与平面的正切值为.点睛:立体几何是高中数学重点内容之一,也是高考重点考查的考点和热点.这类问题的设置目的是考查空间线面的位置关系及角度距离的计算.求解本题第一问时,直接依据题设运用线面平行的判定定理进行分析推证;求解第二问,充分借助题设条件先证明线面垂直,再运用线面垂直的性质定理从而使得问题获证;求解第三问时,先运用线面角的定义找出线面角,再运用解三角形求其正切值使得问题获解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论