重庆九龙坡区高2025届高一数学第一学期期末复习检测模拟试题含解析_第1页
重庆九龙坡区高2025届高一数学第一学期期末复习检测模拟试题含解析_第2页
重庆九龙坡区高2025届高一数学第一学期期末复习检测模拟试题含解析_第3页
重庆九龙坡区高2025届高一数学第一学期期末复习检测模拟试题含解析_第4页
重庆九龙坡区高2025届高一数学第一学期期末复习检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

重庆九龙坡区高2025届高一数学第一学期期末复习检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知圆与圆相离,则的取值范围()A. B.C. D.2.最小正周期为,且在区间上单调递增的函数是()A.y=sinx+cosx B.y=sinx-cosxC.y=sinxcosx D.y=3.下列运算中,正确的是()A. B.C. D.4.若函数的值域为,则实数的取值范围是()A. B.C. D.5.已知,则下列选项错误的是()A. B.C.的最大值是 D.的最小值是6.若向量=,||=2,若·(-)=2,则向量与的夹角()A. B.C. D.7.设为定义在上的偶函数,且在上为增函数,则的大小顺序是()A. B.C. D.8.函数的减区间为()A. B.C. D.9.函数的图象的横坐标和纵坐标同时扩大为原来的3倍,再将图象向右平移3个单位长度,所得图象的函数解析式为A. B.C. D.10.设集合,,则集合=()A B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.,,且,则的最小值为______.12.下面有5个命题:①函数的最小正周期是②终边在轴上的角的集合是③在同一坐标系中,函数的图象和函数的图象有3个公共点④把函数的图象向右平移得到的图象⑤函数在上是减函数其中,真命题的编号是___________(写出所有真命题的编号)13.已知且,则的最小值为______________14.已知,,且,则的最小值为________.15.已知函数,则的值是()A. B. C. D.16.若函数在上单调递增,则的取值范围是__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某商品上市天内每件的销售价格(元)与时间(天)函数的关系是,该商品的日销售量(件)与时间(天)的函数关系是.(1)求该商品上市第天的日销售金额;(2)求这个商品的日销售金额的最大值.18.已知函数()用五点法作出在一个周期上的简图.(按答题卡上所给位置作答)()求在时的值域19.已知直线与相交于点,直线(1)若点在直线上,求的值;(2)若直线交直线,分别为点和点,且点的坐标为,求的外接圆的标准方程20.已知函数是偶函数(1)求实数的值;(2)若函数的最小值为,求实数的值;(3)当为何值时,讨论关于的方程的根的个数21.(1)已知,且,求的值(2)已知,是关于x的方程的两个实根,且,求的值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】∵圆的圆心为,半径为,圆的标准方程为,则又两圆相离,则:,本题选择D选项.点睛:判断两圆的位置关系常用几何法,即用两圆圆心距与两圆半径和与差之间的关系,一般不采用代数法2、B【解析】选项、先利用辅助角公式恒等变形,再利用正弦函数图像的性质判断周期和单调递增区间即可,选项先利用二倍角的正弦公式恒等变形,再利用正弦函数图像的性质判断周期和单调递增区间即可,选项直接利用正切函数图象的性质去判断即可.【详解】对于选项,,最小正周期为,单调递增区间为,即,该函数在上单调递增,则选项错误;对于选项,,最小正周期为,单调递增区间为,即,该函数在上为单调递增,则选项正确;对于选项,,最小正周期为,单调递增区间为,即,该函数在上为单调递增,则选项错误;对于选项,,最小正周期为,在为单调递增,则选项错误;故选:.3、C【解析】根据对数和指数的运算法则逐项计算即可.【详解】,故A错误;,故B错误;,故C正确;,故D错误.故选:C.4、C【解析】因为函数的值域为,所以可以取到所有非负数,即的最小值非正.【详解】因为,且的值域为,所以,解得.故选:C.5、D【解析】根据题意求出b的范围可以判断A,然后结合基本不等式判断B,C,最后消元通过二次函数的角度判断D.【详解】对A,,正确;对B,,当且仅当时取“=”,正确;对C,,当且仅当时取“=”,正确;对D,由题意,,由A可知,所以,错误.故选:D.6、A【解析】利用向量模的坐标求法可得,再利用向量数量积求夹角即可求解.【详解】由已知可得:,得,设向量与的夹角为,则所以向量与的夹角为故选:A.【点睛】本题考查了利用向量数量积求夹角、向量模的坐标求法,属于基础题.7、A【解析】根据单调性结合偶函数性质,进行比较大小即可得解.【详解】因为为偶函数,所以又在上为增函数,所以,所以故选:A8、D【解析】先气的函数的定义域为,结合二次函数性质和复合函数的单调性的判定方法,即可求解.【详解】由题意,函数有意义,则满足,即,解得,即函数的定义域为,令,可得其开口向下,对称轴的方程为,所以函数在区间单调递增,在区间上单调递减,根据复合函数的单调性,可得函数在上单调递减,即的减区间为.故选:D.9、D【解析】函数的图像的横坐标和纵坐标同时扩大为原来的3倍,所得图像的解析式为,再向右平移3个单位长度,所得图像的解析式为,选D.10、B【解析】先根据一元二次不等式和对数不等式的求解方法求得集合M、N,再由集合的交集运算可得选项【详解】解:由得,解得或,所以集合,由得,解得,所以集合,所以,故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、3【解析】根据基本不等式“1”的用法求解即可.【详解】解:解法一:因为所以当且仅当时等号成立.解法二:设,,则,所以当且仅当时等号成立.故答案为:12、①④【解析】①,正确;②错误;③,和在第一象限无交点,错误;④正确;⑤错误.故选①④13、9【解析】因为且,所以取得等号,故函数的最小值为9.,答案为9.14、12【解析】,展开后利用基本不等式可求【详解】∵,,且,∴,当且仅当,即,时取等号,故的最小值为12故答案为:1215、B【解析】分段函数求值,根据自变量所在区间代相应的对应关系即可求解【详解】函数那么可知,故选:B16、【解析】由题意根据函数在区间上为增函数及分段函数的特征,可求得的取值范围【详解】∵函数在上单调递增,∴函数在区间上为增函数,∴,解得,∴实数的取值范围是故答案为【点睛】解答此类问题时要注意两点:一是根据函数在上单调递增得到在定义域的每一个区间上函数都要递增;二是要注意在分界点处的函数值的大小,这一点容易忽视,属于中档题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)750元;(2)元.【解析】(1)根据题目提供的函数关系式分别算出该商品上市第20天的销售价格和日销售量即可;(2)设日销售金额为元,则,分别讨论当时以及当时的情况即可【详解】解:(1)该商品上市第天的销售价格是元,日销售量为件.所以该商品上市第天的日销售金额是元.(2)设日销售金额为(元),则.当,时,取得最大值为(元),当,时,取得最大值为(元).所以第天时,这个商品的日销售金额最大,最大值为(元).18、(1)见解析;(2)值域为.【解析】分析:(1)利用二倍角的正弦公式、二倍角的余弦公式以及两角和与差的正弦公式将函数化为,利用,,,,描点作图即可;()当时,,可得,,从而可得结果.详解:(),,,,五点作图法的五点:,,,,()当时,,∴,此时,,即,,此时,,即,∴在时的值域为点睛:以三角恒等变换为手段,对三角函数及解三角形进行考查是近几年高考考查的一类热点问题,一般难度不大,但综合性较强.解答这类问题,两角和与差的正余弦公式、诱导公式以及二倍角公一定要熟练掌握并灵活应用,特别是二倍角公式的各种变化形式要熟记于心.19、(1);(2).【解析】(1)求出两直线的交点P坐标,代入方程可得;(2)把B坐标代入方程可得,由方程联立可解得A点坐标,可设圆的一般方程,代入三点坐标后可解得其中的参数,最后再配方可得标准方程试题解析:(1)又P在直线l3上,,(2)在l3上,,联立l3,l1得:设△PAB的外接圆方程为x2+y2+Dx+Ey+F=0把P(0,1),A(1,0),B(3,2)代入得:△PAB的外接圆方程为x2+y2x+2y=0,即(x)2+(y+1)2=5点睛:第(2)题中求圆的方程,可不设圆方程的一般式,用以下方法求解:由于l1⊥l2,所以PAPB△PAB的外接圆是以AB为直径的圆外接圆方程为:(x)(x)+y(y+1)=0整理后得:(x)2+(y+1)2=520、(1)(2)(3)当时,方程有一个根;当时,方程没有根;当或或时,方程有两个根;当时,方程有三个根;当时,方程有四个根【解析】(1)利用偶函数满足,求出的值;(2)对函数变形后利用二次函数的最值求的值;(3)定义法得到的单调性,方程通过换元后得到的根的情况,通过分类讨论最终求出结果.【小问1详解】由题意得:,即,所以,其中,∴,解得:【小问2详解】,∴,故函数的最小值为,令,故的最小值为,等价于,解得:或,无解综上:【小问3详解】由,令,,有由,有,,可得,可知函数为增函数,故当时,函数单调递增,由函数为偶函数,可知函数的增区间为,减区间为,令,有,方程(记为方程①)可化为,整理为:(记为方程②),,当时,有,此时方程②无解,可得方程①无解;当时,时,方程②的解为,可得方程①仅有一个解为;时,方程②的解为,可得方程①有两个解;当时,可得或,1°当方程②有零根时,,此时方程②还有一根为,可得此时方程①有三个解;2°当方程②有两负根时,可得,不可能;3°当方程②有两正根时,可得:,又由,可得,此时方程①有四个根;4°当方程②有一正根一负根时,,可得:或,又由,可得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论