上海市静安区风华中学2025届高一数学第一学期期末预测试题含解析_第1页
上海市静安区风华中学2025届高一数学第一学期期末预测试题含解析_第2页
上海市静安区风华中学2025届高一数学第一学期期末预测试题含解析_第3页
上海市静安区风华中学2025届高一数学第一学期期末预测试题含解析_第4页
上海市静安区风华中学2025届高一数学第一学期期末预测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海市静安区风华中学2025届高一数学第一学期期末预测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若函数(,且)在区间上单调递增,则A., B.,C., D.,2.幂函数在区间上单调递增,且,则的值()A.恒大于0 B.恒小于0C.等于0 D.无法判断3.已知,则的大小关系为()A B.C. D.4.下列函数中,既是偶函数又在区间上单调递增的是()A. B.C. D.5.若全集,且,则()A.或 B.或C. D.或.6.命题“,是4倍数”的否定为()A.,是4的倍数 B.,不是4的倍数C.,不是4倍数 D.,不是4的倍数7.已知直线的方程是,的方程是,则下列各图形中,正确的是A. B.C. D.8.酒驾是严重危害交通安全的违法行为.为了保障交通安全,根据国家有关规定:血液中酒精含量达到的驾驶员即为酒后驾车,及以上认定为醉酒驾车.假设某驾驶员喝了一定量的酒后,其血液中酒精含量上升到.如果在停止喝酒以后,他血液中酒精含量会以每小时30%的速度减少,那么他至少要经过()小时才能驾驶.(参考数据:,)A.1 B.3C.5 D.79.工艺扇面是中国书面一种常见的表现形式.某班级想用布料制作一面如图所示的扇面.已知扇面展开的中心角为,外圆半径为,内圆半径为.则制作这样一面扇面需要的布料为().A. B.C. D.10.函数的零点个数为A.1 B.2C.3 D.4二、填空题:本大题共6小题,每小题5分,共30分。11.设函数.则函数的值域为___________;若方程在区间上的四个根分别为,,,,则___________.12.当时x≠0时的最小值是____.13.函数且的图象恒过定点__________.14.的定义域为________________15.新冠疫情防控常态化,核酸检测应检尽检!核酸检测分析是用荧光定量PCR法,通过化学物质的荧光信号,对在PCR扩增进程中成指数级增加的靶标DNA实时检测,在PCR扩增的指数时期,荧光信号强度达到阈值时,DNA的数量与扩增次数n满足:,其中p为扩增效率,为DNA的初始数量.已知某被测标本DNA扩增8次后,数量变为原来的100倍,那么该标本的扩增效率p约为___________;该被测标本DNA扩增13次后,数量变为原来的___________倍.(参考数据:,,,,)16.已知幂函数y=xα的图象经过点2,8,那么三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知圆和定点,由圆外一动点向圆引切线,切点为,且满足.(1)求证:动点在定直线上;(2)求线段长的最小值并写出此时点的坐标.18.已知,当时,求函数在上的最大值;对任意的,,都有成立,求实数a的取值范围19.设不等式的解集为集合A,关于x的不等式的解集为集合B.(1)若,求;(2)命题p:,命题q:,若p是q的必要不充分条件,求实数m的取值范围.20.如图,甲、乙是边长为4a的两块正方形钢板,现要将甲裁剪焊接成一个正四棱柱,将乙裁剪焊接成一个正四棱锥,使它们的全面积都等于一个正方形的面积(不计焊接缝的面积)(1)将你的裁剪方法用虚线标示在图中,并作简要说明;(2)试比较你所制作的正四棱柱与正四棱锥体积的大小,并证明你的结论21.计算(1)-(2)

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】函数在区间上单调递增,在区间内不等于,故当时,函数才能递增故选2、A【解析】由已知条件求出的值,则可得幂函数的解析式,再利用幂函数的性质判断即可【详解】由函数是幂函数,可得,解得或当时,;当时,因为函数在上是单调递增函数,故又,所以,所以,则故选:A3、B【解析】观察题中,不妨先构造函数比较大小,再利用中间量“1”比较与大小即可得出答案.【详解】由题意得,,由函数在上是增函数可得,由对数性质可知,,所以,故选:B4、A【解析】根据基本初等函数的单调性与奇偶性的定义判断可得;【详解】解:对于A:定义域为,且,即为偶函数,且在上单调递增,故A正确;对于B:定义域为,且,即为偶函数,在上单调递减,故B错误;对于C:定义域为,定义域不关于原点对称,故为非奇非偶函数,故C错误;对于D:定义域为,但是,故为非奇非偶函数,故D错误;故选:A5、D【解析】根据集合补集的概念及运算,准确计算,即可求解.【详解】由题意,全集,且,根据集合补集的概念及运算,可得或.故选:D.6、B【解析】根据特称量词命题的否定是全称量词命题即可求解【详解】因为特称量词命题的否定是全称量词命题,所以命题“,是4的倍数”的否定为“,不是4的倍数”故选:B7、D【解析】对于D:l1:y=ax+b,l2:y=bx-a.由l1可知a<0,b<0,对应l2也符合,8、C【解析】设经过个小时才能驾驶,则,再根据指数函数的性质及对数的运算计算可得.详解】设经过个小时才能驾驶,则,即由于在定义域上单调递减,∴∴他至少经过5小时才能驾驶.故选:C9、B【解析】由扇形的面积公式,可得制作这样一面扇面需要的布料.【详解】解:根据题意,由扇形的面积公式可得:制作这样一面扇面需要的布料为.故选:B.【点睛】本题考查扇形的面积公式,考查学生的计算能力,属于基础题.10、C【解析】令,得到,画出和的图像,根据两个函数图像交点个数,求得函数零点个数.【详解】令,得,画出和的图像如下图所示,由图可知,两个函数图像有个交点,也即有个零点.故选C.【点睛】本小题主要考查函数零点个数的判断,考查化归与转化的数学思想方法,考查数形结合的数学思想方法,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、①.②.【解析】根据二倍角公式,化简可得,分别讨论位于第一、二、三、四象限,结合辅助角公式,可得的解析式,根据的范围,即可得值域;作出图象与,结合图象的对称性,可得答案.【详解】由题意得当时,即时,,又,所以;当时,即时,,又,所以;当时,即时,,又,所以;当时,即时,,又,所以;综上:函数的值域为.因为,所以,所以,作出图象与图象,如下如所示由图象可得,所以故答案为:;12、【解析】直接利用基本不等式的应用求出结果【详解】解:由于,所以(当且仅当时,等号成立)故最小值为故答案为:13、【解析】令真数为,求出的值,再代入函数解析式,即可得出函数的图象所过定点的坐标.【详解】令,得,且.函数的图象过定点.故答案为:.14、【解析】由分子根式内部的代数式大于等于0,分母不等于0列式求解x的取值集合即可得到答案.或x>5.∴的定义域为考点:函数的定义域及其求法.15、①.0.778②.1788【解析】①对数运算,由某被测标本DNA扩增8次后,数量变为原来的100倍,可以求出p;②由n=13,可以求数量是原来的多少倍.【详解】故答案为:①0.778;②1778.16、3【解析】根据幂函数y=xα的图象经过点2,8,由2【详解】因为幂函数y=xα的图象经过点所以2α解得α=3,故答案:3三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2).【解析】(1)由,所以,从而得解;(2)由,所以的最小值即为的最小值,过点O作直线的垂线求垂足即可.【详解】(1)证明:设点的坐标为则由,∴即动点在定直线上(2)由,所以即为所以最小值时,取到最小值.又点在直线上,所以此时直线的方程为,联立直线解得点.18、(1)3;(2).【解析】(1)由,得出函数的解析式,根据函数图象,得函数的单调性,即可得到函数在上的最大值;(2)对任意的,都有成立,等价于对任意的,成立,再对进行讨论,即可求出实数的取值范围.试题解析:(1)当时,,结合图像可知,函数在上是增函数,在上是减函数,在上是增函数,又,,所以函数在上的最大值为3.(2),由题意得:成立.①时,,函数在上是增函数,所以,,从而,解得,故.②因为,由,得:,解得:或(舍去)当时,,此时,,从而成立,故当时,,此时,,从而成立,故,综上所述:.点睛:(1)对于形如,对任意的,恒成立的问题,可转化为恒成立的问题,然后根据函数的单调性将函数不等式转化为一般不等式处理;(2)解决不等式的恒成立问题时,要转化成函数的最值问题求解,解题时可选用分离参数的方法,若参数无法分离,则可利用方程根的分布的方法解决,解题时注意区间端点值能否取等号19、(1)(2)【解析】(1)求解A,B,根据交集、补集运算即可;(2)由题意转化为,建立不等式求解即可.【详解】(1),,解得,所以,当时,由可得,解得,所以,,所以(2)由解得,即,因为命题p:,命题q:,且p是q的必要不充分条件,所以,所以,且等号不同时成立,解得,即实数m的取值范围为【点睛】关键点点睛:根据充分条件、必要条件的意义,转化为集合间的包含、真包含关系,是解题的关键,属于中档题.20、(1)见解析(2)正四棱柱的体积比正四棱锥的体积大【解析】1该四棱柱的底面为正方体,侧棱垂直底面,可知其由两个一样的正方形和四个完全相同的长方形组成,对图形进行切割,画出图形即可,画法不唯一;2正四棱柱的底面边长为2a,高为a,正四棱锥的底面边长为2a,高为h=(3a)解析:(1)将正方形甲按图中虚线剪开,以两个正方形为底面,四个长方形为侧面,焊接成一个底面边长为2a,高为a的正四棱柱将正方形乙按图中虚线剪开,以两个长方形焊接成边长为2a的正方形为底面,三个等腰三角形为侧面,两个直角三角形合拼成为一侧面,焊接成一个底面板长为2a,斜高为3a的正四棱锥(2)∵正四棱柱的底面边长为2a,高为a,∴其体积V1又∵正四棱锥的底面边长为2a,高为h=(3a)∴其体积V∵42即4>823,4故所制作的正四棱柱的体积比正四棱锥的体积大(说明:裁剪方式不唯一,计算的体积也不一定相等)点睛

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论